
Albuquerque Lisp Club - 2014-08-28

Julia- Yet Another Lisp

8/25/14, 10:03 AM

Page 1 of 1file:///Users/spillar/Desktop/julia-logo.svg

Speaker Not An Expert

Why I am Got Interested
❖ Motivation: Scientific Computation!

❖ A couple of blogposts by Gradydon: “Goldilocks Languages”!

❖ Ousterhout’s Dichotomy: high level/low level languages (TCL/C in his case)!

❖ Yuck!

❖ Common Lisp/Scheme span both, but some things “missing” or “not common”:!

❖ Support for graphics, data formats (HDF5), etc.!

❖ Leverage: easy integration with C/Fortran/Python etc.!

❖ Support for parallel computing (we closet >100$/hr, CPU 0.05$/hr)!

❖ Networking libraries!

❖ Notebook interface

Is Julia a Lisp? Lispy Features
❖ It has a REPL!

❖ It has GC!

❖ Simple, uniform syntax !

❖ It’s homoiconic!

❖ Everything is an expression!

❖ Incremental compilation using LLVM (more later!)!

❖ It has macros (will demonstrate)!

❖ Written at MIT, open source & development (github)

Homoiconic: Wikipedia

In computer programming, homoiconicity (from the Greek
words homo meaning the same and icon meaning
representation) is a property of some programming languages
in which the program structure is similar to its syntax, and
therefore the program's internal representation can be inferred
by reading the text's layout.[1] If a language is homoiconic, it
means that the language text has the same structure as its
abstract syntax tree (i.e. the AST and the syntax are
isomorphic). This allows all code in the language to be
accessed and transformed as data, using the same
representation.

http://en.wikipedia.org/wiki/Greek_language
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Program_structure
http://en.wikipedia.org/wiki/Syntax_(programming_languages)
http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Isomorphism

What the Creators Say
❖ Rich type information, provided naturally by multiple

dispatch!

❖ Aggressive code specialization against run-time types!

❖ JIT compilation using the LLVM compiler framework!

!

❖ Since Feb 2012- currently v0.3, but already useful.!

❖ 11000 C, 4000 C++, 3500 Scheme (as of sept 2012, no libs)

What’s It Look Like?
function mandel(z)	
 c = z	
 maxiter = 80	
 for n = 1:maxiter	
 if abs(z) > 2	
 return n-1	
 end	
 z = z^2 + c	
 end	
 return maxiter	
end

function randmatstat(t)	
 n = 5	
 v = zeros(t)	
 w = zeros(t)	
 for i = 1:t	
 a = randn(n,n)	
 b = randn(n,n)	
 c = randn(n,n)	
 d = randn(n,n)	
 P = [a b c d]	
 Q = [a b; c d]	
 v[i] = trace((P.'*P)^4)	
 w[i] = trace((Q.'*Q)^4)	
 end	
 std(v)/mean(v), std(w)/mean(w)	
end

nheads = @parallel (+) for i=1:100000000	
 int(randbool())	
end

More Examples: Types
julia> type Foo
 bar
 baz::Int
 qux::Float64
 end

julia> foo = Foo("Hello, world.", 23, 1.5)
Foo("Hello, world.",23,1.5)
!
julia> typeof(foo)
Foo (constructor with 2 methods)

julia> names(foo)
3-element Array{Symbol,1}:
 :bar
 :baz
 :qux

julia> foo.bar
"Hello, world."
!
julia> foo.baz
23
!
julia> foo.qux
1.5

julia> foo.qux = 2
2.0

immutable Complex
 real::Float64
 imag::Float64
end

julia> typeof((1,"foo",2.5))
(Int64,ASCIIString,Float64)

Using LLVM

❖ LLVM originally meant “Low Level Virtual Machine”!

❖ Now compiler infrastructure, language agnostic,
through run time (jit - just in time compilation)!

❖ still optimizing on VM- but much more!

❖ (Winner 2012 ACM Software System Award)!

❖ Replacing gcc in many places- e.g. Apple

Consequences of LLVM (1/3)
❖ Cross Language:!

❖ Call C, etc. directly

julia> t = ccall((:clock, "libc"), Int32, ())
2292761
!
julia> t
2292761
!
julia> typeof(ans)
Int32

function gethostname()
 hostname = Array(Uint8, 128)
 ccall((:gethostname, "libc"), Int32,
 (Ptr{Uint8}, Uint),
 hostname, length(hostname))
 return bytestring(convert(Ptr{Uint8}, hostname))
end

function compute_dot(DX::Vector{Float64},
DY::Vector{Float64})
 assert(length(DX) == length(DY))
 n = length(DX)
 incx = incy = 1
 product = ccall((:ddot_, "libLAPACK"),
 Float64,
 (Ptr{Int32}, Ptr{Float64},
Ptr{Int32}, Ptr{Float64}, Ptr{Int32}),
 &n, DX, &incx, DY, &incy)
 return product
end

Consequences of LLVM (2/3)
❖ Familiar memory model: symbols ref. typed objects!

❖ Types in Julia !

❖ boxing/unboxing costs?!

❖ “User-defined types are as fast and compact as built-
ins”!

❖ Almost all functions are generic functions !

❖ Multi-methods/Multiple Dispatch “at run time”

Consequences of LLVM (3/3)

❖ JIT support: !

❖ Optimize on the fly, incremental compilation!

❖ type inferences allows everything to be a multi-
method/multiple dispatch!

❖ Very good performance: Comparable to C/Fortran!

❖ Without requiring everything to be an array

Macros
@name expr1 expr2 ...
@name(expr1, expr2, ...)

macro name(expr1, expr2, ...)
 ...
 return resulting_expr
end

macro time(ex)
 return quote
 local t0 = time()
 local val = $ex
 local t1 = time()
 println("elapsed time: ", t1-t0, " seconds")
 val
 end
end

Using:

Defining:

Example:!
(showing Hygiene)

Some Design Features (Costanza)

❖ Lisp-1, like Scheme, not a Lisp-2!

❖ All variables are lexically scoped- no dynamic variables!

❖ All mathematical functions are generic, can be extended!

❖ Strings are unicode!

❖ return multiple values!

❖ Module system, with fairly well integrated installation

References
❖ “Learn X in Y Minutes” where X = Julia!
	 http://learnxinyminutes.com/docs/julia/

❖ Language Website!
	 •	 http://julialang.org

❖ Original Paper!
	 •	 http://arxiv.org/abs/1209.5145

❖ Pascal Costanza’s Highly Opinionated Blog!
❖ http://p-cos.blogspot.com/2014/07/a-lispers-first-impression-of-julia.html	

❖ Graydon: Goldilocks Languages!
	 •	 http://julialang.org/

http://arxiv.org/abs/1209.5145
http://p-cos.blogspot.com/2014/07/a-lispers-first-impression-of-julia.html
http://julialang.org/

