
Deep Belief Networks: Underpinnings

Earl Spillar

2013-08-15

Outline

1 Purpose and Timing

2 Introduction to Deep Belief Networks: Architecture and Features

3 Boltzmann Machine Neural Networks

4 References

Purpose

Our goal is to explain Deep Belief Networks based on
Restricted Boltzmann Machines
We may decide to play around with implementing these as well
This will not be accomplished in one 20 min talk!
There are quite a few materials available on the web- see
references at end

Deep Belief networks

First became aware through google tech talk by Geoff Hinton
http://www.youtube.com/watch?v=AyzOUbkUf3M The Next
Generation of Neural Networks
Geoff Hinton and others have been cooking these since 1984
or so
Talk was good, but left me confused
Recently (last year) his group one several competitions- see his
web site

http://www.youtube.com/watch?v=AyzOUbkUf3M
http://www.youtube.com/watch?v=AyzOUbkUf3M
http://www.youtube.com/watch?v=AyzOUbkUf3M

History of Nerual Nets: Some Motivation

Neural net craze started (for me) with Hopfield, early 80s, but-
Hopfield nets, circa 1984, were shown to be insufficiently
strong (Minsky)
Backpropagation is slow at training things, and requires
labeled examples to train
How to make something that trains faster?

Deep Belief Networks Features

Program by showing examples of "Patterns"
Think of it as something in n-space, typically binary
It will automatically categorize these into sets
No Traning Sets (unless you want to)
Can reverse and "dream" examples
"holographic-" fill in missing pieces
Works as well as vector support machines or better without
traning
Architecture similar to the mind

Basic architecture of Deep Belief Networks

Built on (Restrictred) Boltzmann Machines- discussed this
month
Training (R)BMs has been speeded up with a trick so it’s
MANY times faster than it used to be
One layer learns, basis for next, etc.
Information flow can also be reversed and go back down the
tree
Multiple layers are essential for "abstracting" features,
cascading allows complex things to go on

Deep Belief Networks/Deep Boltzmann Machines

Deep Boltzmann Machines

h3

h2

h1

v

W3

W2

W1

Deep Belief
Network

Deep Boltzmann
Machine

Pretraining

W W

W

h

h

hh

W

h

h

vv

Compose
W

W

v

RBM

RBM

1 1

2

1

1

22

2

1

2

2

1

Figure 2: Left: A three-layer Deep Belief Network and a three-layer Deep Boltzmann Machine. Right: Pretraining consists of learning
a stack of modified RBM’s, that are then composed to create a deep Boltzmann machine.

Consider a two-layer Boltzmann machine (see Fig. 2, right
panel) with no within-layer connections. The energy of the
state {v,h1,h2} is defined as:

E(v,h1,h2; θ) = −v!W1h1 − h1!W2h2, (9)

where θ = {W1,W2} are the model parameters, repre-
senting visible-to-hidden and hidden-to-hidden symmetric
interaction terms. The probability that the model assigns to
a visible vector v is:

p(v; θ) =
1

Z(θ)

∑

h1,h2

exp (−E(v,h1,h2; θ)). (10)

The conditional distributions over the visible and the two
sets of hidden units are given by logistic functions:

p(h1
j = 1|v,h2) = σ

(∑

i

W 1
ijvi +

∑

m

W 2
jmh2

j

)
, (11)

p(h2
m = 1|h1) = σ

(∑

j

W 2
imh1

i

)
, (12)

p(vi = 1|h1) = σ
(∑

j

W 1
ijhj

)
. (13)

For approximate maximum likelihood learning, we could
still apply the learning procedure for general Boltzmann
machines described above, but it would be rather slow, par-
ticularly when the hidden units form layers which become
increasingly remote from the visible units. There is, how-
ever, a fast way to initialize the model parameters to sensi-
ble values as we describe in the next section.

3.1 Greedy Layerwise Pretraining of DBM’s

Hinton et al. (2006) introduced a greedy, layer-by-layer un-
supervised learning algorithm that consists of learning a
stack of RBM’s one layer at a time. After the stack of
RBM’s has been learned, the whole stack can be viewed
as a single probabilistic model, called a “deep belief net-
work”. Surprisingly, this model is not a deep Boltzmann
machine. The top two layers form a restricted Boltzmann
machine which is an undirected graphical model, but the
lower layers form a directed generative model (see Fig. 2).

After learning the first RBM in the stack, the generative
model can be written as:

p(v; θ) =
∑

h1

p(h1;W1)p(v|h1;W1), (14)

where p(h1;W1) =
∑

v p(h1,v;W1) is an implicit
prior over h1 defined by the parameters. The second
RBM in the stack replaces p(h1;W1) by p(h1;W2) =∑

h2 p(h1,h2;W2). If the second RBM is initialized cor-
rectly (Hinton et al., 2006), p(h1;W2) will become a bet-
ter model of the aggregated posterior distribution over h1,
where the aggregated posterior is simply the non-factorial
mixture of the factorial posteriors for all the training cases,
i.e. 1/N

∑
n p(h1|vn;W1). Since the second RBM is re-

placing p(h1;W1) by a better model, it would be possible
to infer p(h1;W1,W2) by averaging the two models of h1

which can be done approximately by using 1/2W1 bottom-
up and 1/2W2 top-down. Using W1 bottom-up and W2

top-down would amount to double-counting the evidence
since h2 is dependent on v.

To initialize model parameters of a DBM, we propose
greedy, layer-by-layer pretraining by learning a stack of
RBM’s, but with a small change that is introduced to elim-
inate the double-counting problem when top-down and
bottom-up influences are subsequently combined. For the
lower-level RBM, we double the input and tie the visible-
to-hidden weights, as shown in Fig. 2, right panel. In this
modified RBM with tied parameters, the conditional distri-
butions over the hidden and visible states are defined as:

p(h1
j = 1|v) = σ

(∑

i

W 1
ijvi +

∑

i

W 1
ijvi

)
, (15)

p(vi = 1|h1) = σ
(∑

j

W 1
ijhj

)
. (16)

Contrastive divergence learning works well and the modi-
fied RBM is good at reconstructing its training data. Con-
versely, for the top-level RBM we double the number of
hidden units. The conditional distributions for this model

Salakhutdinov et al.

Neural Nets: Boltzmann Machines

A bunch of "neurons" connected by weights
want particular configurations to have "greater probability",
corresponding to reality

from Scholarpedia

Probablility of Configuration

Consider an array of i = 1 . . . n neurons
let the state of the neurons in a particular configuration be si ,
either 0 or 1
The weights between the cells can be expressed in a matrix wij

Indivifual cells have "threshhold" or "bias" terms θi

I think the people in this area started as physicists, so we have
an analogy with statistical mechanics
Define the energy as Econfig = −∑

i<j wijsi sj +
∑

i θi si

wii = 0 and wij = wji .
basically the most likely states are the ones with the lowest
energy

Cells With No Information

Imagine now you have most of the cells filled in from an
observation, but you don’t have information about a few
Using the best w and α fill in the known cells
Solve for the "unknown" cells by looking for the values that
would give the network the lowest energy
"holographic"- missing information can be filled in
Note that one network can store information on several patters
All we need is a way to program the network based on
examples

Hidden cells

When you program the network, you might insert a few cells
NOT tied to inputs
When you program the network, it turns out that these will be
pulled to be "identifiers" for particular patterns
In programming the network, each cell essentially becomes a
flag raised for a particular class of input
I don’t have a good explanation for this (yet)
So, if we have a way to train the network, it will recognize
patterns and throw this information into these hidden cells

Restricted vs Unrestricted Boltzmann Machines

Restricted Bolzmann machinees have fewer connections
They are faster to train
The hidden cells are in one layer, sensed cells in another layerDeep Boltzmann Machines

h

v

J

W

L

h

v

W

General Boltzmann
Machine

Restricted Boltzmann
Machine

Figure 1: Left: A general Boltzmann machine. The top layer
represents a vector of stochastic binary “hidden” features and
the bottom layer represents a vector of stochastic binary “visi-
ble” variables. Right: A restricted Boltzmann machine with no
hidden-to-hidden and no visible-to-visible connections.

hidden and visible units are given by:

p(hj = 1|v,h−j) = σ
(D∑

i=1

Wijvi +

P∑

m=1\j

Jjmhj

)
, (4)

p(vi = 1|h,v−i) = σ
(P∑

j=1

Wijhj +

D∑

k=1\i

Likvj

)
, (5)

where σ(x) = 1/(1 + exp(−x)) is the logistic function.
The parameter updates, originally derived by Hinton and
Sejnowski (1983), that are needed to perform gradient as-
cent in the log-likelihood can be obtained from Eq. 2:

∆W = α
(
EPdata

[vh"]− EPmodel
[vh"]

)
, (6)

∆L = α
(
EPdata

[vv"]− EPmodel
[vv"]

)
,

∆J = α
(
EPdata

[hh"]− EPmodel
[hh"]

)
,

where α is a learning rate, EPdata
[·] denotes an expec-

tation with respect to the completed data distribution
Pdata(h,v; θ) = p(h|v; θ)Pdata(v), with Pdata(v) =
1
N

∑
n δ(v − vn) representing the empirical distribution,

and EPmodel
[·] is an expectation with respect to the distri-

bution defined by the model (see Eq. 2). We will some-
times refer to EPdata

[·] as the data-dependent expectation,
and EPmodel

[·] as the model’s expectation.
Exact maximum likelihood learning in this model is in-
tractable because exact computation of both the data-
dependent expectations and the model’s expectations takes
a time that is exponential in the number of hidden units.
Hinton and Sejnowski (1983) proposed an algorithm that
uses Gibbs sampling to approximate both expectations. For
each iteration of learning, a separate Markov chain is run
for every training data vector to approximate EPdata

[·], and
an additional chain is run to approximate EPmodel

[·]. The
main problem with this learning algorithm is the time re-
quired to approach the stationary distribution, especially
when estimating the model’s expectations, since the Gibbs
chain may need to explore a highly multimodal energy

landscape. This is typical when modeling real-world dis-
tributions such as datasets of images in which almost all
of the possible images have extremely low probability, but
there are many very different images that occur with quite
similar probabilities.

Setting both J=0 and L=0 recovers the well-known re-
stricted Boltzmann machine (RBM) model (Smolensky,
1986) (see Fig. 1, right panel). In contrast to general BM’s,
inference in RBM’s is exact. Although exact maximum
likelihood learning in RBM’s is still intractable, learning
can be carried out efficiently using Contrastive Divergence
(CD) (Hinton, 2002). It was further observed (Welling
and Hinton, 2002; Hinton, 2002) that for Contrastive Di-
vergence to perform well, it is important to obtain exact
samples from the conditional distribution p(h|v; θ), which
is intractable when learning full Boltzmann machines.

2.1 Using Persistent Markov Chains to Estimate the
Model’s Expectations

Instead of using CD learning, it is possible to make use of a
stochastic approximation procedure (SAP) to approximate
the model’s expectations (Tieleman, 2008; Neal, 1992).
SAP belongs to the class of well-studied stochastic approx-
imation algorithms of the Robbins–Monro type (Robbins
and Monro, 1951; Younes, 1989, 2000). The idea behind
these methods is straightforward. Let θt andXt be the cur-
rent parameters and the state. Then Xt and θt are updated
sequentially as follows:

• GivenXt, a new state Xt+1 is sampled from a transi-
tion operator Tθt(X

t+1; Xt) that leaves pθt invariant.

• A new parameter θt+1 is then obtained by replacing
the intractable model’s expectation by the expectation
with respect to Xt+1.

Precise sufficient conditions that guarantee almost sure
convergence to an asymptotically stable point are given in
(Younes, 1989, 2000; Yuille, 2004). One necessary con-
dition requires the learning rate to decrease with time, i.e.∑∞

t=0 αt = ∞ and
∑∞

t=0 α2
t < ∞. This condition can be

trivially satisfied by setting αt = 1/t. Typically, in prac-
tice, the sequence |θt| is bounded, and the Markov chain,
governed by the transition kernel Tθ, is ergodic. Together
with the condition on the learning rate, this ensures almost
sure convergence.

The intuition behind why this procedure works is the fol-
lowing: as the learning rate becomes sufficiently small
compared with the mixing rate of the Markov chain, this
“persistent” chain will always stay very close to the sta-
tionary distribution even if it is only run for a few MCMC
updates per parameter update. Samples from the persistent
chain will be highly correlated for successive parameter up-
dates, but again, if the learning rate is sufficiently small the

from Scholarpedia

Programming the network- finding the lowest energy state

Statical mechanics, and monte carlo method ala Metropolis,
Ulam, von Neumann, Fermi
Simulatd annealing process
How do you find the lowest energy state for particular α and
w?
Randomly change state "locally"- that is change an ni

accept the change if the energy has decreased
occasionally accept changes if energy worse, based on a
decreasing "temperature"
This is analogous to the cooling of a liquid into a solid
If you go slow, you get low energy organized states: crystals
These are the lowest energy states

Programming the network itself: w and θ

Here was the original programming algorithm:
How to determine w and θ?
Find the values of w and θ which minimize the energy for the
training set
Use a variant of simulated annealing:
Feed in the traning set, that is points
Vary all the w and θ to minimze energy

Incorporating hidden cells into the training

We want to find a way to include the "hidden units" into the
program, so that they will correspond to particular common
states of the system.
These enable the network to understand more complicated
patterns then can be encapsulated with simple pair connections
An example in an early paper was recognizing a shift register

Wake Sleep Learning: A Preview

To train these more complex nets, a somewhat more complex
annealing algorithm is run:
It can be shown ∆wij − 〈vihj〉data − 〈vihj〉model

The first term is the expectation w.r.t. the data
The first expectation is done by using a sample input vector,
drawing random hj using a sigmoid distribution, and averaging
The second expectation is the expectation w.r.t the
programming
The second expectation is done by starting things at random,
and Gibbs sampling for a very long time
Let’s dive in here next time!

An algorithm to imlement today:

Create nets with hidden nodes
Create matrices of connections
Create code that calculates energies
Create code that perturbs
Accept perturbation with probability 1

1+e∆E/T

Refrences (1/2)

Google Tech Talk Video:
http://www.youtube.com/watch?v=AyzOUbkUf3M

You can find most of these at Google Scholar:
scholar.google.com
Hinton’s group’s website:
http://learning.cs.toronto.edu/~hinton/ many
references there
Scholarpedia: http:
//www.scholarpedia.org/article/Boltzmann_machine

Early paper on training Boltzmann Machines: Ackley, David
H., Geoffrey E. Hinton, and Terrence J. Sejnowski. "A learning
algorithm for Boltzmann machines." Cognitive science 9.1
(1985): 147-169. http://www.learning.cs.toronto.edu/
~hinton/absps/cogscibm.pdf

http://www.youtube.com/watch?v=AyzOUbkUf3M
http://learning.cs.toronto.edu/~hinton/
http://www.scholarpedia.org/article/Boltzmann_machine
http://www.scholarpedia.org/article/Boltzmann_machine
http://www.learning.cs.toronto.edu/~hinton/absps/cogscibm.pdf
http://www.learning.cs.toronto.edu/~hinton/absps/cogscibm.pdf

References (2/2)

Hinton, Geoffrey E., and Terrance J. Sejnowski. "Learning and
relearning in Boltzmann machines." MIT Press, Cambridge,
Mass 1 (1986): 282-317.
A Practical Guide to Training Restricted Boltzmann Machines
- Hinton, from his web site
Deep review paper: Bengio, Yoshua. "Learning deep
architectures for AI." Foundations and trends® in Machine
Learning 2.1 (2009): 1-127. http://www.iro.umontreal.
ca/~bengioy/papers/ftml_book.pdf

Wikipeida of course
http://en.wikipedia.org/wiki/Boltzmann_machine

Deep Boltzmann Machines Salakhutdinov, Ruslan, and
Geoffrey E. Hinton. "Deep boltzmann machines." In
International Conference on Artificial Intelligence and
Statistics, pp. 448-455. 2009

http://www.iro.umontreal.ca/~bengioy/papers/ftml_book.pdf
http://www.iro.umontreal.ca/~bengioy/papers/ftml_book.pdf
http://en.wikipedia.org/wiki/Boltzmann_machine

	Purpose and Timing
	Introduction to Deep Belief Networks: Architecture and Features
	Boltzmann Machine Neural Networks
	References

