
Developing Correct Compilers
A LISP Experiment

Jeffrey A. Barnett

Albuquerque Retired Citizens

January 24, 2009

Jeffrey A. Barnett Developing Correct Compilers



2 Compiler Correctness

Debugging programs is hard enough without the added
complications of a defective compiler.

Even suspicion of compiler bugs is sufficient to derail
application development.

Jeffrey A. Barnett Developing Correct Compilers



3 This Talk

Methods used to develop and debug a LISP 1.5 compiler in
the late 1960’s.

Developed time was approximately 6 months.
Included Runtime (GC, library, IO, etc.) and Assembler.

Only two compiler bugs found in over a decade–actually the
same bug twice.

The methods included:
1 Subset compiles correctly⇒ the whole language does too, and
2 Explicitly use of context in compiler algorithms.

Jeffrey A. Barnett Developing Correct Compilers



4 Miscellaneous Bullets

What is a compiler?

A compiler is a computer program that processes a formal
specification written in a formal language and BINDS some
aspects of the specification’s meanings.

Why should you care about this talk?

I used to say that a competent programmer should/must write a
compiler every few years in order to keep his journeyman status
current. This idea was based on the fact that compilers usually
represented the ultimate necessity for clean organization and, thus,
it was a great way to revisit and practice the first principle of
system organization: structure über alles.

Jeffrey A. Barnett Developing Correct Compilers



5 Caveat Programmer

Emphasis on space saving: Reducing swap cost and GC hit
much more important than saving an instruction execution
here and there.

Thus, there was a derived emphasis on branch optimization.

Many simple functions such as car and cdr were NOT open
coded.

My Point of View

I believe that many LISP compiler writers of the era were, given
memory and address limitations, misguided in pursuing fast code
at the expense of space reductions. (This observation, right or
wrong, was the origin of many CRISP ideas.)

Jeffrey A. Barnett Developing Correct Compilers



6 Rest of the Talk

Subset-Implies-Whole Technique

Use of Compiler Contexts

Jeffrey A. Barnett Developing Correct Compilers



7 Subset Implies Whole Example

Let language consist of variables, and, or, and not.

Let L1 and L2 be expressions in this language.

We will say that L1 ≡ L2 when L1 can be transformed to L2

by any number of applications of

Double Negation (not (not x))↔ x
DeMorgan (not (and a. . . z))↔ (or (not a). . . (not z)), etc.

Nesting (or a. . . z)↔ (or a. . . i (or j. . . q) r. . . z), etc.

Note, if L1 ≡ L2 then L1 and L2 contain the same number of
variable references and the references occur to the same
variables in the same order.

Also note that “≡” is an equivalence relation.

Unfortunately, (or x x) 6≡ x

Jeffrey A. Barnett Developing Correct Compilers



8 Compiler Strategy

Use compiler algorithm A s.t.

If L1 ≡ L2, then A(L1) and A(L2) are provably bit-for-bit
identical codes!

So what?

Jeffrey A. Barnett Developing Correct Compilers



9 A Canonical Sublanguage

Consider the sublanguage where

No or is a top-level expression in another or.
No and is a top-level expression in another and.
All not’s are wrapped around variables.

Every expression in the original language can be converted,
using the three transformations mentioned above, to an
equivalent expression in the sub language.

Therefore, if every expression in the sublanguage compiles
correctly, so does every expression in the original language!

Ergo, one only needs to check the compiler is correct for
expressions in the sublanguage.

Jeffrey A. Barnett Developing Correct Compilers



10 Compiler Impact

It’s much easier to invent a reasonable set of test cases for the
compiler when only the sublanguage needs to be considered.

Note, algorithm A did not do explicit double negation
reduction, de-nesting of and’s and or’s, or DeMorgan
transformations.

The equivalent output property was a magical property of A
first noted to me by one of the LISP 2 hackers.

I, later, proved the magic was real and not smoke.

Jeffrey A. Barnett Developing Correct Compilers



11 Rest of the Talk

Subset-Implies-Whole Technique

Use of Compiler Contexts

Jeffrey A. Barnett Developing Correct Compilers



12 Compilation Context

Context: Informal Characterization

The context in which a form appears tells the compiler what to do
with the result of the evaluation. In LISP 1.5 three major contexts
are identifiable:

Statement Evaluate for (side) effect. If a value is produced, it
may be discarded.
[Submode] A place to go after evaluation is known.

Expression A value is expected and needed.
[Submode] A place in the code is expected to receive
that value.

Predicate A value is expected and will determine the value of
the program counter.

Jeffrey A. Barnett Developing Correct Compilers



13 Context Examples

(defun foo ()

(let () ; let

(if p1 s1 s2) ; if1

(if p2 e1 e2))) ; if2

EXP EXP+ STAT STAT+ PRED

let e1 if1 s1 p1

if2 s2 p2

e2

Jeffrey A. Barnett Developing Correct Compilers



14 Gross Compiler Organization

comp-exp(exp, ego)
(let((context :exp))
(comp exp))

comp-pred(pred, tgo, fgo)
(let((context :pred))
(comp pred))

comp-stat(stat, sgo)
(let((context :stat))
(comp stat))

comp(form) – Master Switch

Macros Variables Constants comp-if comp-labels comp-etc.

?

? ? ? ? ? ?

Special Variables

CONTEXT, EGO, SGO, TGO, FGO

Jeffrey A. Barnett Developing Correct Compilers



15 Compiler Output Language

Compiler Output

The action of a compiler subroutine is to tack machine code
instructions and labels onto a listing. A label is just a symbol or
integer that will be used as a target of branch instructions.

Machine Code Instructions Used Below

L x v Load register x with copy of value of variable v.

B ` Branch to label `.

BT x ` Branch to label ` if register x 6= nil.

BF x ` Branch to label ` if register x = nil.

Jeffrey A. Barnett Developing Correct Compilers



16 Variable Compiler–Register Machine

(defun comp-variable (sym)

(check-var-ref sym)

(case context

(:exp (attach ’(L R ,sym))

(and ego

(attach ’(B ,ego))))

(:stat (and sgo

(attach ’(B ,sgo))))

(:pred (attach ’(L R ,sym))

(and tgo

(attach ’(BT R ,tgo)))

(and fgo

(attach ’(BF R ,fgo))))))

Jeffrey A. Barnett Developing Correct Compilers



17 Compile Not Form

(defun comp-not (form)

;; FORM == (NOT x)

(case context

(:stat (comp-exp (cadr form) sgo))

(:exp (comp ‘(IF ,(cadr form) NIL T)))

(:pred (comp-pred (cadr form) fgo tgo))))

Jeffrey A. Barnett Developing Correct Compilers



18 Compile IF Expression

form = (if p x y), ego = nil, labels a, b

comp-pred(p, nil, a)

comp-exp(x, b)

attach-label(a)

comp-exp(y, nil)

attach-label(b)

form = (if p x y), ego /= nil, labels a

comp-pred(p, nil, a)

comp-exp(x, ego)

attach-label(a)

comp-exp(y, ego)

Jeffrey A. Barnett Developing Correct Compilers



19 Compile IF Statement

form = (if p x y), sgo = nil, labels a, b

comp-pred(p, nil, a)

comp-stat(x, b)

attach-label(a)

comp-stat(y, nil)

attach-label(b)

form = (if p x y), sgo /= nil, labels a

comp-pred(p, nil, a)

comp-stat(x, sgo)

attach-label(a)

comp-stat(y, sgo)

Jeffrey A. Barnett Developing Correct Compilers



20 Compile IF Predicate

form = (if p x y), labels a, b

tgo, fgo /= nil tgo=nil, fgo/=nil tgo/=nil, fgo=nil

comp-pred(p,nil,a) comp-pred(p,nil,a) comp-pred(p,nil,a)

comp-pred(x,tgo,fgo) comp-pred(p,b,fgo) comp-pred(x,tgo,b)

attach-label(a) attach-label(a) attach-label(a)

comp-pred(y,tgo,fgo) comp-pred(y,tgo,fgo) comp-pred(y,tgo,fgo)

attach-label(b) attach-label(b)

Contexts of Compilation Depend on Context

These three slides showing compilation of IF expressions, statements, and
predicates indicate that the context of a form depends on the context of its
parent. The subcontexts provide trivial chances for optimizations.

Jeffrey A. Barnett Developing Correct Compilers



21 Contexts Help Compiler Debugging

What’s necessary to debug our compiler?

First, debug the building blocks:

Variables
Constants
Function Calls
Macro Expander

Second, deal with more sexy open-coded forms:

Try each form variation (e.g., IF with two or three arguments)
In each of the eight contexts.

If it all works, there is a fair degree of assurance the compiler
is good to go.

Jeffrey A. Barnett Developing Correct Compilers



22 Comparison With Other Systematic Methods

What other systematic methods?

While there are many meta-tools to develop compiler syntax
passes, there are hardly any that support code generation.

The few I know about do not support systematic ways of
doing checkout.

The regression testing files are usually enormous and as much
a source of pride as an alcoholic’s beer belly!

In the interest of fairness

To be fair, most languages do not have the sort of consistent
semantics and rules of interpretation that LISP does. The above
methods simply exploit that consistency. Part of that consistency
is expressed by order-of-evaluation constraints and the fact that
you know, given the computational context, exactly what forms
will and what forms will not evaluate.

Jeffrey A. Barnett Developing Correct Compilers



23 Afterword

As mentioned in the introduction, a LISP compiler was
developed using these techniques. It was found to be virtually
error free in over a decade of service.

The sublanguage-mirrors-the-whole concept arouse naturally
through the recursive organization of the compiler. However,
such transformations could be explicitly done if it would
simplify debugging.

Note, there where contexts not discussed above, e.g., binding
and declaration. Of course they must be handled too.

Most programming languages have similar sets of context and
the compiler writer should investigate whether and how they
might be exploited.

Context optimizers, if available, are appropriate before
graph-analysis optimizers take over.

Jeffrey A. Barnett Developing Correct Compilers



24 Afterword (continued)

Life’s Tough

Code, such as a compiler, that performs many different tasks is
very hard to debug. Any approach or technique that suggests a
systematic way to debug is worth gold.

LISP Code Often Resembles a Compiler

Many Lisp applications are organized by recursive descent
strategies. If one can organize that recursion into a small number
of contexts, debugging might be better structured. General use of
a small number of special variables that control activity within the
recursion is an indication that these methods might be applicable.

Jeffrey A. Barnett Developing Correct Compilers


	Title
	Introduction
	Subset Implies Whole
	Compilation Contexts
	Afterword

