
The CRISP Programming Language System
An Historical Overview

Jeffrey A. Barnett

Albuquerque Retired Citizens

September 20, 2009

Jeffrey A. Barnett The CRISP Programming Language System

2 Crunching Lisp

Timeframe is early 1970’s so resources are strictly limited.

Needed efficient Lisp-like tools to support speech
understanding research.

Systems would be developed by group of people with different
talents, interest, and knowledge.

Big part of research was to determine system structure.

Decision made to invent and implement Crunching Lisp, aka
CRISP, a task undertaken by Doug Pintar and Jeff Barnett.

Jeffrey A. Barnett The CRISP Programming Language System

3 Historical Context

Lisp ancestors: Lisp 2, IBM 360 Lisp 1.5

(D)ARPA Speech Understanding Research (SUR) Program

IBM 370/145 with 8MB virtual 1MB real memory

IBM VM available as OS

Truth in Talk Warning

Everything described in this talk was implemented and used to
develop speech understanding systems; Exception, the language
itself was not. The final few slides will make clear what this means.

Jeffrey A. Barnett The CRISP Programming Language System

4 My Observations/Mantra

Language Luxury

If development environment does not provide control and data
structures well beyond the hackers’ needs, the entire architecture
invention process will be consumed (badly) inventing cliches that
should be provided by the programming language; the application
tends to be ignored.

Working and Playing Well Together

Programming language systems that support multiple programmers
must provide constructs that might not be necessary for one or a
very few hackers. Concerns are divided into yours, mine, and
ours–support tools must support this separation. One-liners are
irrelevant.

Jeffrey A. Barnett The CRISP Programming Language System

5 Rest of This Talk

Namespaces

Data Structures

Control Structures and Spaghetti

Types and Incremental Compiles

Storage Management

Odds and Ends

What Actually Got Implemented!

Jeffrey A. Barnett The CRISP Programming Language System

6 Namespaces

Not Quite a Definition

Named objects are in different namespaces if they can have the
same name without conflict; They are in the same namespace if
they must have different names. Namespaces are important to keep
developers out of each other’s hair. N.B. Namspaces are typically
defined by reference contexts as well as where names are defined.

Global objects: variables, functions, macros, types, etc.

Property names

Fields in a ntuple type

Local variables viz a viz shadowing rules

Jeffrey A. Barnett The CRISP Programming Language System

7 Global Object Names

Each global name had a symbol first and last name, e.g.,
cons$crisp or mark$syntax.

Symbols used where a name was expected were converted to
a name using guidance provided by the programmer:

Guidance was in the form a default last name and an ordered
list of last names.
A symbol used in definition context got default last name.
A symbol, without local definition, used in reference context
tried last names in order seeking a definition (use default if
necessary).

Compiler would visit all files seeking definitions before
conversions.

The current package system is usually cleaner but not always.

Jeffrey A. Barnett The CRISP Programming Language System

8 Properties on Symbols

A symbol had a property list

But it was really a tree

Property “names” where ordered lists of symbols

Typically one of those names matched the name of a global
name pool

PN PV

PN PV PN PV

?

-
A
A
AU

-

A
A
AU

-

HL

SN NL
-

Jeffrey A. Barnett The CRISP Programming Language System

9 Rest of This Talk

Namespaces

Data Structures

Control Structures and Spaghetti

Types and Incremental Compiles

Storage Management

Odds and Ends

What Actually Got Implemented!

Jeffrey A. Barnett The CRISP Programming Language System

10 Data Structures

node1, . . . , node8 made by cons1, . . . , cons8

Stack groups aka processes (discussed later)

Structures (ntuples) named fields constant repeats

Arrays (pointers and flat)

Names (link, last, binding)

Symbols (print name, prop list, name list, hash link)

Numbers (small ints, int, real, complex) boxed and not

Byte and half ints in structures and arrays

Spaces (where various sorts of conses create things)

Jeffrey A. Barnett The CRISP Programming Language System

11 Rest of This Talk

Namespaces

Data Structures

Control Structures and Spaghetti

Types and Incremental Compiles

Storage Management

Odds and Ends

What Actually Got Implemented!

Jeffrey A. Barnett The CRISP Programming Language System

12 Control Structures and Spaghetti

Standard stuff:

Sequential: prog, etc.
Conditional: cond, if, select, case, typecase, etc.
Branch
Loop with asynchronous generators, FSM
Try
Pitch and catch

Pseudo processes/coroutines (see next slide)

Jeffrey A. Barnett The CRISP Programming Language System

13 Stack Group AKA Process State

A stack group contains the following,

Two stacks:
1 A stack of unboxed numbers
2 A stack of pointers, special bindings, return points, catches

Three pointers to other stack groups–two form trees
1 The stack group that activated/started this one
2 The context where special bindings are sought
3 The place to look for a catch when unwinding
4 NIL meant the global environment

Forestry Rules

There are two stack-group trees, context and handler. The fact
that x is a parent of y v́ız a v́ız one type of pointer imposes NO
restrictions on the relation of x and y v́ız a v́ız the other pointer
type. All three pointers can be changed.

Jeffrey A. Barnett The CRISP Programming Language System

14 Stack Groups are Useful

Example: A parser can fork the current process when a list of
syntactic alternatives occur; each one inherits the parent’s
context (e.g., bindings) and a child can “improve” the parent
in a way that will be shared.

Think of the self-analytic power of eval-in(exp,SG).

A stack group’s context, starter, and/or handler parents can
be changed individually or together as long as trees result.

Groups can be used to mimic various sorts of closures.

N.B. None of the modern closure disciplines are automatically
provided; however, one could impose fairly straightforward
naming and binding conventions to simulate them.

Jeffrey A. Barnett The CRISP Programming Language System

15 Coroutine Primitives

f (e1, . . . , en[, context][, handler][, activator]), where f is
defined to be a process function as opposed to an ordinary
function. Creates a new process with f as the top-level
function and starts its execution in a new stack group.

resume(h, exp), where h is a handle of a process. Starts h
executing and provides value of exp to the resume point where
h was suspended.

set-x(h1, h2), where h1 and h2 are handles and x is context,
handler, or activator. Sets the indicated parent of h1 to h2.

A normal return from a top-level process function resumes the
activator parent with the naturally produced value.

eval-in as mentioned previously.

copy(h) copies the handle and stack group.

Jeffrey A. Barnett The CRISP Programming Language System

16 Rest of This Talk

Namespaces

Data Structures

Control Structures and Spaghetti

Types and Incremental Compiles

Storage Management

Odds and Ends

What Actually Got Implemented!

Jeffrey A. Barnett The CRISP Programming Language System

17 Types and Incremental Compiles

Basics

The system was strongly typed, supported incremental compiles,
type definitions could be recursive, and numbers–with exact type
specified–were unboxed.

Basic types: general, cons nodes, integer, real, complex,
number, symbol, character, name, handle, etc.

Composite types:

Ntuples (with constant repeat counts)
Arrays with dimension and element type
Name and its subtypes:

Functions with argument/value types specified
Global variable with value type specified
A name was a shorthand, in type context, for its own type

Jeffrey A. Barnett The CRISP Programming Language System

18 Type Hierarchy

General

Identifier Noden Array Ntuple Name Boolean Number Handle

Character String Float Integer Complex

Node1 . . . Node8

Synonym Generator Macro Transform

Processor Function Variable Space

Byte Half

Notes

Need subspecification: Array, Ntuple, Processor, Function, Variable
May only appear as element type in array or ntuple: Byte, Half

Jeffrey A. Barnett The CRISP Programming Language System

19 Type Recursion

Example

Ntuple Example–A List of Alternating Integers and Floats
(def-ntuple foo1 (a integer)(b foo2))
(def-ntuple foo2 (a float)(b foo1))

Example

Functional Example–A function takes a symbol argument does
something and returns a function to call next time:

(defun x$y (symbol) -> x$y)

Recall, name∗ can be used in type context to mean the type
ascribed to that name; least-fixed point semantics intended.

∗Footnote

Things were so arranged that all type definition loops pass through
at least one name object.

Jeffrey A. Barnett The CRISP Programming Language System

20 Subtype Relation

Definition

We will write t1 ⊂ t2, where t1 and t2 are types, to denote t1 is a
subtype of t2. That means that every object of type t1 is also of
type t2. The idea is that anywhere one can deal with any object of
type t2, an object of type t1 will be handled properly.

The Crucial Question

Let t1 = (func(a1)→ v2) and t2 = (func(a2)→ v2). When is
t1 ⊂ t2?

The Answer

t1 ⊂ t2 iff a2 ⊂ a1 ∧ v1 ⊂ v2. These were the criteria used to
determine whether functional objects needed to be shadowed.

Jeffrey A. Barnett The CRISP Programming Language System

21 Incremental Compilation

Conditions of Contest

Since the system was strongly typed, your first compile had to
define enough stuff so that there were no references to undefined
types. Typical strategy was to use dummy definitions then use
incremental compile to replace dummies with real definitions.

Two types of files: 1) pseudo directory–list of files, 2) code.

Compiler made two passes over all files in input tree:
1 Grab all top-level definitions and process them.
2 Compile code with all definitions available.

First pass dealt with the intricacies of recursive definitions and
decided, for existing definitions whether current definition
could be abandoned (or kept and shadowed).

Both new and old definitions might need to coexist to provide
type safety.

Jeffrey A. Barnett The CRISP Programming Language System

22 Rest of This Talk

Namespaces

Data Structures

Control Structures and Spaghetti

Types and Incremental Compiles

Storage Management

Storage Management

Odds and Ends

What Actually Got Implemented

Jeffrey A. Barnett The CRISP Programming Language System

23 Storage Management

There were multiple sorts of spaces:

One for each consi , where 1 ≤ i ≤ 8
Ntuple
Array
Stack Group
etc.

A space was made up of dynamically allocated regions that
were not necessarily contiguous.

One space of each type was selected by binding to an
appropriate variable, e.g., default-cons2$crisp.

Conses went into the selected space by default.

Each space definition specified several policy functions that
advised object creation and the GC.

Jeffrey A. Barnett The CRISP Programming Language System

24 Space Policy Functions

Method to Accumulate Storage Management Knowledge

Policy alternatives allow experiments with memory management
tactics as well as application of well-know schemes.

Cons The cons function determined object allocation
policy. Smart cons, from erasure, next available.

Initial Mark Mark any objects in space that are kept by policy,
e.g., a symbol with a property list.

Mark Marks object determined to be a keeper and causes
strong pointers to be chased.

Prune Abandon unnecessary objects (x out weak links).

Plan Determine where each object in space will reside
after GC–fold space if appropriate.

Update Update pointers from objects in space.

Move Relocate objects in space.

Fixup Clear bookkeeping junk.

Jeffrey A. Barnett The CRISP Programming Language System

25 Storage Management Experiments

Was smart cons really smart? It didn’t seem so.

Was copy collect the cat’s meow? It might have been but our
limits on address and well as memory made real experiments
inconclusive.

Were erasure lists the wave of the future as well as the past?
Seemed to make no sense in VM systems.

Should array/ntuple space regions be allocated to max size or
to something more reasonable and usual? No conclusive
results.

What are the tradeoffs between larger name space blocks and
availability of GP registers for computing? Not tried.

What is the impact of quicker storage release to OS?
Extraordinary!

Jeffrey A. Barnett The CRISP Programming Language System

26 Rest of This Talk

Namespaces

Data Structures

Control Structures and Spaghetti

Types and Incremental Compiles

Storage Management

Odds and Ends

What Actually Got Implemented!

Jeffrey A. Barnett The CRISP Programming Language System

27 Odds and Ends–Linguistic

A few things that didn’t fit into any of the above categories:

Characters/symbols given left/right precedence as well as class
attributes. Facilitate building a powerful infix reader front end
to the language system. (Most prefix herein is for you).

A version of own/static variables.

Availability of many compile-time facilities:

Macro–as you know it today
Synonym–symbol macro
Transform–defsubst (without defun)
Generator–part of the compiler for special forms, e.g., IF
Global name as type

System-level primitives borrowed from Lisp 2:

core(int)
bits(int, int, memref)
drive(exp, type)
callit(exp, type)

Jeffrey A. Barnett The CRISP Programming Language System

28 Odds and Ends–Implementation

The executing process/coroutine always accessed global
variable values through top-level binding cells (shallow
binding).

Non-executing process/coroutine maintained deep bindings.

The GC process always ran with the global environment as its
parents.

The IBM 360 Lisp 1.5 system was used to build the bootstrap
mechanism; its output was a core image.

CRISP, from early on, was able to recompile itself and build
core images.

We had a large investment in Lisp 1.5 software so we just
loaded Lisp in a CRISP heap and managed it, pretty much,
like a coroutine.

Jeffrey A. Barnett The CRISP Programming Language System

29 Rest of This Talk

Namespaces

Data Structures

Control Structures and Spaghetti

Types and Incremental Compiles

Odds and Ends

Storage Management

What Actually Got Implemented!

Jeffrey A. Barnett The CRISP Programming Language System

30 What Actually Got Implemented

CRISP was Developed in Parallel with Speech Research

Our primary goal was speech research; CRISP was merely a
supporting technology. After the two of us spent the better part of
a half year designing and starting CRISP implementation we got
tired–lack of sleep. We needed the system-building capabilities but
not necessarily the language.

The Certa Perfect Sleeper

The approach we decide on was to implement the world’s most
capable assembler, CRISP Assemble Program (CAP). We had
already built all the supporting libraries: storage management, type
mechanisms, file processor, input/output, coroutine support,
arithmetic, GC, etc. All we had to do was make it possible to
access the hard stuff in a way that wasn’t error prone.

Jeffrey A. Barnett The CRISP Programming Language System

31 Call and Branching Example

(defun ext (a b c)
(if (eq a b) (cons a c)

(cons a (cons b c))))

(defCAP ((a symbol) (b symbol) (c node2))
(L R5 a)
(C R5 b)
(BE (CALL cons2

(ST R5 PUSH)
(L R5 C))

(RET))
(CALL cons2

(ST R5 PUSH)
(CALL cons2

(MV b PUSH)
(L R5 C))))

Jeffrey A. Barnett The CRISP Programming Language System

32 Process Start Example

(defCAP spawn ((arg general) (continue handle))
(CALL RESUME

(L R5 continue)
(ST R5 push)
(START proc-fcn

(L R5 arg)
(ST R5 push)
(L R5 self$crisp)
(ST R5 push)
(ST R5 push)
(ST R5 push))))

Start a process by calling proc-fcn, with the specified argument,
pass the value given by our restarter to continuation, then return
the value given by our next restarter.

Jeffrey A. Barnett The CRISP Programming Language System

33 Binding Example

(defCAP boom ((n integer)) (defun boom (n)
(L R5 n) (when (> n 0)
(CR R5 R0) (let((x (boom (1- n)))
(BLE (LR R5 R0) (RET)) y)
(BLOCK (dec (special y))
(CALL boom (cons x x))))

(DECF R5)
(ST R5 PUSHN))

(ST R5 PUSH)
(ST R0 PUSH)
(BIND ((x node2) (y general global))
(CALL cons2

(L R5 x)
(ST R5 PUSH))))

Jeffrey A. Barnett The CRISP Programming Language System

34 Miscellaneous CAP Examples

(L R5 (S_B_C R4)) %%S an ntuple

(typecase
(type1 $instructions)
(type2 $instructions)
...)

(catch (reasons) $instructions)

(throw (reasons) $instructions)

(try $($instructions))

$ indicates 0 or more repetitions:

Jeffrey A. Barnett The CRISP Programming Language System

35 Endnotes

We built speech systems in CRISP and were able to
comfortably experiment with most aspects of system
architecture/structure.

The use of a machine language was little hindrance since
1 In the old days, assemblers were meant for people.
2 Machine order codes weren’t so damn kinky.

Many of the more exotic data and control mechanisms were
used early on, then simplified when we better understood
what we were doing.

CRISP was archived at Princeton(?) home for retired
languages.

I searched for and found Doug Pintar while preparing this talk.
He’s alive and well in Denver, Colorado!

Jeffrey A. Barnett The CRISP Programming Language System

	Title
	Introduction
	Namespaces
	Data Structures
	Control Structures and Spaghetti
	Types and Incremental Compiles
	Storage Management
	Storage Management
	What Actual Got Implemented
	Endnotes

