
Basic Scheme Macros for Function Docs

Richard Cleis
ABQ Lisp/Scheme Users Group

Albuquerque, New Mexico
December 16, 2007

1

A Few dozen pages to describe the following...

(lam-w/args args body)
(lam-w/expr args body)
(lam-w/info info args body)

(docs-for function)
(list-docs function1 [function2 ...])

... yet they are implemented in one page
using only elementary techniques of Scheme and define-syntax

2

Utilized Macro Features

S-Expressions are handled, unevaluated, with names
(arg . body) handles the lambda form, which is 'implied-begin'
Ellipses represent the names of multiple input functions
Nameless procedures have temporary names in macroland
Syntax-error is used as described in define-syntax-primer.txt

3

Means for associating information with lambda expressions
High level programming often requires quick reference
Slight variations of lambda fill a table of expressions
Examples: 3 similar macros
Lambda implementation is leached for args and body
Conclusions: Scheme + syntax-language... effective

4

Means for associating information with lambda expressions
Intended for high level functions in workspaces

High level programming often requires quick reference
Slight variations of lambda fill a table of expressions
Examples: 3 similar macros
Lambda implementation is leached for args and body
Conclusions: Scheme + syntax-language... effective

5

Means for associating information with lambda expressions
High level programming often requires quick reference

Digging through source isn't always practical
Slight variations of lambda fill a table of expressions
Examples: 3 similar macros
Lambda implementation is leached for args and body
Conclusions: Scheme + syntax-language... effective

6

Means for associating information with lambda expressions
High level programming often requires quick reference
Slight variations of lambda fill a table of expressions

A few macros and functions access the expressions
Examples: 3 similar macros
Lambda implementation is leached for args and body
Conclusions: Scheme + syntax-language... effective

7

Means for associating information with lambda expressions
High level programming often requires quick reference
Slight variations of lambda fill a table of expressions
Examples: 3 similar macros

May reference functions or expressions
Lambda implementation is leached for args and body
Conclusions: Scheme + syntax-language... effective

8

Means for associating information with lambda expressions
High level programming often requires quick reference
Slight variations of lambda fill a table of expressions
Examples: 3 similar macros
Lambda implementation is leached for args and body

Function reference (not name) provides key
Conclusions: Scheme + syntax-language... effective

9

Means for associating information with lambda expressions
High level programming often requires quick reference
Slight variations of lambda fill a table of expressions
Examples: 3 similar macros
Lambda implementation is leached for args and body
Conclusions: Scheme + syntax-language... effective

Many solutions can easily be investigated

10

Means for associating information with lambda expressions
High level programming often requires quick reference
Slight variations of lambda fill a table of expressions

A few macros and functions access the expressions
Examples: 3 similar macros
Lambda implementation is leached for args and body
Conclusions: Scheme + syntax-language... effective

11

How to doc lamba expressions

Three macros fill doc table; two are just like lambda:
(lam-w/args args body)
(lam-w/expr args body)
(lam-w/info info args body)

A function, docs-for, extracts the docs
(docs-for function)

A macro can be used to associate names to docs
(list-docs function1 [function2 ...])

Docs-for works with any name for a function (including none)
List-docs lists the docs with any name for the function

12

Means for associating information with lambda expressions
High level programming often requires quick reference
Slight variations of lambda fill a table of expressions
Examples: 3 similar macros

May reference functions or expressions
Lambda implementation is leached for args and body
Conclusions: Scheme + syntax-language... effective

13

Macro that saves expression for the args

Often, carefully named args are enough to 'jog your memory'
(define interest-a
 (lam-w/args (principal percent)

(* principal 0.01 percent)))

To get the docs, use:
> (docs-for interest-a) ; produces...
(lambda (principal percent))

To associate a name:
> (list-docs interest-a) ; produces...
(interest-a (lambda (principal percent)))

14

Macro that saves the expression for the entire function

High level functions may be short; lam-w/expr can doc them
(define interest-e
 (lam-w/expr (principal percent)

(* principal 0.01 percent)))

> (docs-for interest-e) ; produces...
(lambda (principal percent)
 (* principal 0.01 percent))

15

Macro that saves the expression for anything

Sometimes, a string is desired (Any legal expression is ok)
• Docs-for will evaluate the info expression if it is a procedure
• Nature is upset, though; lambda now has info, args, and a body
(define interest-i
 (lam-w/info "Supply principal & rate as percent"

(principal percent)
 (* principal 0.01 percent)))

> (docs-for interest-i)
"Supply principal & rate as percent"

16

Macro that saves the expression for a function

A function in the first arg can do anything
• It evaluates whenever docs-for is used
• The arg may be a function name (below, it's embedded)
• GUI's and talking docs are easy to implement
(define interest-f
 (lam-w/info (lambda ()

 (display "This could feed a gui")
 (newline))
(principal percent)

 (* principal percent)))

> (docs-for interest-f)
"This could feed a gui"

17

List-docs macro associates names with docs

A function would need the names and the procedures
• Scheme extracts a name with 'tick... frightens Schemeaphobics
• A list of pairings is normally needed, anyway... ergo: this macro
> (list-docs interest-a

interest-e
 interest-i
 interest-f)

((interest-a (lambda (principal percent)))
(interest-e
(lambda (principal percent)
 (* principal 0.01 percent)))

 (interest-i "Supply principal & rate as percent")
 (interest-f #<procedure>))

18

All previous examples listed as nameless procedures:

(define list-of-functions
 (list

(lam-w/args (principal percent)
(* principal 0.01 percent))

 (lam-w/expr (principal percent)
(* principal 0.01 percent))

 (lam-w/info "Supply principal & rate as percent"
(principal percent)

 (* principal 0.01 percent))
 (lam-w/info (lambda ()

 (display "This could feed a gui")
 (newline))
(principal percent)

 (* principal 0.01 percent))))

19

Docs-for works with the list of nameless procedures

The four procedures only appear identical in this REPL
All are actually distinct keys to the docs...

> list-of-functions
(#<procedure:f>
#<procedure:f>
 #<procedure:f>
 #<procedure:f>)

20

Docs-for naturally maps the nameless list

> (map docs-for list-of-functions)
This could feed a gui
((lambda (principal percent))
(lambda (principal percent)
 (* principal 0.01 percent))
 "Supply principal & rate as percent"
 #<void>)

The doc of the last procedure returns void after displaying the text
Function synonyms work, too
• Function names contain a procedure just like an element of a list

21

Means for associating information with lambda expressions
High level programming often requires quick reference
Slight variations of lambda fill a table of expressions
Examples: 3 similar macros
Lambda implementation is leached for args and body

Function reference (not name) provides key
Conclusions: Scheme + syntax-language... effective

22

Macros copy expressions in lambda and table the docs

The temporary f is formed in syntax space
• f is used for the key and the Macro's final value.
(define-syntax lam-w/args
 (syntax-rules ()
 ((_ args . body)

(let ((f (lambda args . body)))
 (sort-table! f '(lambda args))
 f))

 ((_ ...)
(syntax-error
"Use λ form. Expr for args will be tabled."))))

lam-w/args replaces the sort line with:
(sort-table! f '(lambda args . body))

23

A simple list and one function for making docs

Any 'real' sorter or hash-table could be used
• yet a textbook list works, and is silly-simple.

(define table (list))
(define sort-table!
 (lambda f&info
 (set! table (cons f&info table))))

(define (get-info f table)
 (cond ((null? table)

#f)
((equal? f (caar table))
(cadar table))

 (else
(get-info f (cdr table)))))

24

docs-for evaluates a procedure if it gets one

docs-for is defined with lam-w/args
• (docs-for docs-for) returns the expression for its args
• Programming has no soul if such things are not kewl
(define docs-for
 (lam-w/args (f-as-key)

(do-info (get-info f-as-key table))))
(define do-info
 (lambda (info)
 (cond (info (cond ((procedure? info) (info))

(else info)))
(else 'not-in-table))))

25

The list-docs macro lists a name with the docs

To be used for making help tables in GUIs, for example
• The macro allows 'ticking' the procedure name, and
• forming the list with ellipses
(define-syntax list-docs
 (syntax-rules ()
 ((_ f ...)

(list (list 'f (get-info f table)) ...))
 ((_ ...)

(syntax-error "Use (list-docs f [...])"))))

26

lam-w/info expects an expression, info, before args

Docs-for will evaluate info if a function, return info otherwise
(define-syntax lam-w/info
 (syntax-rules ()
 ((_ info args . body)

(let ((f (lambda args . body)))
 (sort-table! f info)
 f))

 ((_ ...)
(syntax-error
"Use λ form, but put info before args."))))

27

Macro syntax-error from define-syntax-primer.txt

Causes REPL to provide information about the macro
• Designed to work with recursive macros
• Designed to fail so that caller's text is returned
• Programming has no soul if... oh, never mind
(define-syntax syntax-error
 (syntax-rules ()
 ((syntax-error)

(syntax-error "Bad use of syntax error!"))))

28

Means for associating information with lambda expressions
High level programming often requires quick reference
Slight variations of lambda fill a table of expressions
Examples: 3 similar macros
Lambda implementation is leached for args and body
Conclusions: Scheme + syntax-language... effective

Many solutions can easily be investigated

29

Conclusions other than: this solution is practical

Macros permit matching multiple patterns and recursion, but in this
case it is easier to read, debug, and use a macro for each form
Basing these macros on lambda (instead of define) is more flexible
• E.g. when using synonyms and lists of unnamed functions
Possible non-portable improvements
• Use hash-tables or sorting functions to table information
• Contain code in a Scheme Module (like this implementation)
• Use GUI to display and manipulate the information
The reasons for define-syntax are learned by doing, not reading

30

