HOP

Scheme-like Web Apps

http://hop.inria.fr

Overall architecture

e SchemeZ2js - compiles scheme to javascript
« Web browser is responsible for all GUI interaction

« A web "broker" is responsible for application logic
o Also responsible for communicating with other
brokers for distributed computing

o HOP is currently implemented as a web server but
presumably could be something else

Stratums

« A stratum defines the separation between data and
code
o (In scheme isn't code also data?)

e Main stratum
o Application logic, executes on the server

e GUI stratum
o User interface logic, executes on the client

e Both strata can be defined in the same file

Going between strata

n_n
~

e The escape character takes you in to the GUI:
o (<P> :onclick ~(alert "foo"))

» The escape character "$" takes from the GUI back to
the server:
o (let ((foo "bar")) (<P> :onclick ~(alert $foo)))

Example @ http://reason.local:8080/HopEx/Escape.hop

Services

o created with a define-server directive

« provides an entry point for client to fetch data from the
server after a page load

Example @ http://reason.local:8080/HopEx/Svc.hop

Hello World

« Slightly more complex service example

+ Reads files

Example @ http://reason.local:8080/HopEx/Hello.hop

Other stuff

e HSS - hop CSS which allows HOP code to be
embedded in CSS files

e Sqlite - HOP provides an Sqlite module for serialization

« No tightly integrated serialization layer

