
HOP

Scheme-like Web Apps

http://hop.inria.fr

Overall architecture

Scheme2js - compiles scheme to javascript

Web browser is responsible for all GUI interaction

A web "broker" is responsible for application logic
Also responsible for communicating with other
brokers for distributed computing

HOP is currently implemented as a web server but
presumably could be something else

Stratums

A stratum defines the separation between data and
code

(In scheme isn't code also data?)

Main stratum
Application logic, executes on the server

GUI stratum
User interface logic, executes on the client

Both strata can be defined in the same file

Going between strata

The escape character "~" takes you in to the GUI:
(<P> :onclick ~(alert "foo"))

The escape character "$" takes from the GUI back to
the server:

(let ((foo "bar")) (<P> :onclick ~(alert $foo)))

Example @ http://reason.local:8080/HopEx/Escape.hop

Services

created with a define-server directive

provides an entry point for client to fetch data from the
server after a page load

Example @ http://reason.local:8080/HopEx/Svc.hop

Hello World

Slightly more complex service example

Reads files

Example @ http://reason.local:8080/HopEx/Hello.hop

Other stuff

HSS - hop CSS which allows HOP code to be
embedded in CSS files

Sqlite - HOP provides an Sqlite module for serialization

No tightly integrated serialization layer

