Cluster Management

James E. Prewett

October 8, 2008
Common Management Tools
 OSCAR
 ROCKS
 Other Popular Cluster Management tools
Software Management/Change Control
 Cfengine
 Getting Started with Cfengine
Parallel Shell Tools / Basic Cluster Scripting
 PDSH
 Dancer’s DSH
 Clusterit
 C3 tools (cexec)
 Basic Cluster Scripting
Backup Management
Logging/ Automated Log Analysis
 Regular Expression Review
 Regular Expression
 Meta-characters
 Regular Expression
 Meta-characters (cont.)
 SEC
 Logsurfer+
Security plans/procedures, Risk Analysis
 Network Topologies and Packet Filtering
Linux Tricks
 Cluster-specific issues
 Checking Your Work
Regression Testing
System / Node / Software Change Management Logs
 How to know when to upgrade, trade–offs
Monitoring tools
OSCAR Information

<table>
<thead>
<tr>
<th>Vital Statistics:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version:</td>
</tr>
<tr>
<td>Date:</td>
</tr>
<tr>
<td>Distribution Formats:</td>
</tr>
<tr>
<td>URL:</td>
</tr>
</tbody>
</table>
OSCAR cluster distribution features:

- Supports X86, X86_64 processors
OSCAR cluster distribution features:

- Supports X86, X86_64 processors
- Supports Ethernet networks
OSCAR cluster distribution features:

- Supports X86, X86_64 processors
- Supports Ethernet networks
- Supports Infiniband networks
OSCAR cluster distribution features:

- Supports X86, X86_64 processors
- Supports Ethernet networks
- Supports Infiniband networks
- Graphical Installation and Management tools
 ... if you like that sort of thing
OSCAR (key) Cluster Packages

What's in the box?

- Torque Resource Manager
OSCAR (key) Cluster Packages

What's in the box?

- Torque Resource Manager
- Maui Scheduler
OSCAR (key) Cluster Packages

What's in the box?

- Torque Resource Manager
- Maui Scheduler
- c3
- LAM/MPI
- MPICH
- OpenMPI
- OPIUM (OSCAR User Management software)
- pFilter (Packet filtering)
- PVM
- System Imager Suite (SIS)
- Switcher Environment Switcher
OSCAR (key) Cluster Packages

What's in the box?

- Torque Resource Manager
- Maui Scheduler
- c3
- LAM/MPI
- MPICH
- OpenMPI
OSCAR (key) Cluster Packages

What's in the box?

- Torque Resource Manager
- Maui Scheduler
- c3
- LAM/MPI
- MPICH
- OpenMPI
- OPIUM (OSCAR User Management software)
OSCAR (key) Cluster Packages

What's in the box?

- Torque Resource Manager
- Maui Scheduler
- c3
- LAM/MPI
- MPICH
- OpenMPI
- OPIUM (OSCAR User Management software)
- pFilter (Packet filtering)
OSCAR (key) Cluster Packages

Whats in the box?

- Torque Resource Manager
- Maui Scheduler
- c3
- LAM/MPI
- MPICH
- OpenMPI
- OPIUM (OSCAR User Management software)
- pFilter (Packet filtering)
- PVM
OSCAR (key) Cluster Packages

What's in the box?

- Torque Resource Manager
- Maui Scheduler
- c3
- LAM/MPI
- MPICH
- OpenMPI
- OPIUM (OSCAR User Management software)
- pFilter (Packet filtering)
- PVM
- System Imager Suite (SIS)
OSCAR (key) Cluster Packages

Whats in the box?

- Torque Resource Manager
- Maui Scheduler
- c3
- LAM/MPI
- MPICH
- OpenMPI
- OPIUM (OSCAR User Management software)
- pFilter (Packet filtering)
- PVM
- System Imager Suite (SIS)
- Switcher Environment Switcher
OSCAR Supported Linux Distributions

- RedHat Enterprise Linux 4
OSCAR Supported Linux Distributions

- RedHat Enterprise Linux 4
- RedHat Enterprise Linux 5
OSCAR Supported Linux Distributions

- RedHat Enterprise Linux 4
- RedHat Enterprise Linux 5
- Fedora Core 7
OSCAR Supported Linux Distributions

- RedHat Enterprise Linux 4
- RedHat Enterprise Linux 5
- Fedora Core 7
- Fedora Core 8
OSCAR Supported Linux Distributions

- RedHat Enterprise Linux 4
- RedHat Enterprise Linux 5
- Fedora Core 7
- Fedora Core 8
- Yellow Dog Linux 5.0

"Clones of supported distributions, especially open source rebuilds of Red Hat Enterprise Linux such as CentOS and Scientific Linux, should work but are not officially tested."
OSCAR Supported Linux Distributions

- RedHat Enterprise Linux 4
- RedHat Enterprise Linux 5
- Fedora Core 7
- Fedora Core 8
- Yellow Dog Linux 5.0
- OpenSUSE Linux 10.2 (x86_64 Only!)
OSCAR Supported Linux Distributions

- RedHat Enterprise Linux 4
- RedHat Enterprise Linux 5
- Fedora Core 7
- Fedora Core 8
- Yellow Dog Linux 5.0
- OpenSUSE Linux 10.2 (x86_64 Only!)

“Clones of supported distributions, especially open source rebuilds of Red Hat Enterprise Linux such as CentOS and Scientific Linux, should work but are not officially tested.”
OSCAR Installation

▶ Install a supported Linux on the server Node
Leave at least 4GB free in each of / and /var!
The easy way is to make 1 big partition for /!
OSCAR Installation

- Install a supported Linux on the server Node
 Leave at least 4GB free in each of / and /var!
 The easy way is to make 1 big partition for /!

- Create repositories for SystemInstaller

 # mkdir /tftpboot
 # mkdir /tftpboot/oscar
 # mkdir /tftpboot/distro
 # mkdir /tftpboot/distro/OS-version-arch
 # mkdir /tftpboot/distro/OS-version-arch
OSCAR Installation

- **Install a supported Linux on the server Node**
 Leave at least 4GB free in each of / and /var!
 The easy way is to make 1 big partition for /!

- **Create repositories for SystemInstaller**

  ```
  # mkdir /tftpboot
  # mkdir /tftpboot/oscar
  # mkdir /tftpboot/distro
  # mkdir /tftpboot/distro/OS-version-arch
  ```

- **Unpack the oscar-repo-common-rpms and the oscar-repo-DISTRO-VER-ARCH tarballs into /tftpboot/oscar*/
OSCAR Installation

▸ Install a supported Linux on the server Node
 Leave at least 4GB free in each of / and /var!
 The easy way is to make 1 big partition for /!

▸ Create repositories for SystemInstaller
 # mkdir /tftpboot
 # mkdir /tftpboot/oscar
 # mkdir /tftpboot/distro
 # mkdir /tftpboot/distro/OS-version-arch

▸ Unpack the oscar-repo-common-rpms and the
 oscar-repo-DISTRO-VER-ARCH tarballs into /tftpboot/oscar/

▸ Copy your RPMs into the /tftpboot/distro/OS-version-arch
directory
OSCAR Installation (cont.)

- Install yum unless your OS already has it

¹ This is not in the documentation, but I found that the packages were not signed causing yume to barf unless you passed it the --nogpgcheck option. YMMV
OSCAR Installation (cont.)

- Install yum unless your OS already has it
- Install yume:
  ```bash
  # yum install createrepo
  /tftpboot/oscar/common-rpms/yume*.rpm
  ```

1 This is not in the documentation, but I found that the packages were not signed causing yume to barf unless you passed it the --nogpgcheck option. YMMV
OSCAR Installation (cont.)

- Install yum unless your OS already has it
- Install yume:
  ```sh
  # yum install createrepo
  /tftpboot/oscar/common-rpms/yume*.rpm
  ```
- Install oscar-base RPM:
  ```sh
  # yume --nogpgcheck --repo /tftpboot/oscar/common-rpms install oscar-base
  ```

1This is not in the documentation, but I found that the packages were not signed causing yume to barf unless you passed it the --nogpgcheck option. YMMV
OSCAR Server Node Network Configuration

▶ Give your host a hostname! The default of “localhost” or “localhost.localdomain” will *not* work.
OSCAR Server Node Network Configuration

- Give your host a hostname! The default of “localhost” or “localhost.localdomain” will *not* work.

- Configure the “Public” network interface as per the requirements of your local network. This is the network that will connect to the Internet (or the lab network), so configure it appropriately.
OSCAR Server Node Network Configuration

▶ Give your host a hostname! The default of “localhost” or “localhost.localdomain” will *not* work.

▶ Configure the “Public” network interface as per the requirements of your local network. This is the network that will connect to the Internet (or the lab network), so configure it appropriately.

▶ Configure the “Private” network interface using a “Private” IP address.

The IANA has reserved the following three blocks for private internets:

▶ 10.0.0.0 – 10.255.255.255 (10/8 CIDR block)
▶ 172.16.0.0 – 172.31.255.255 (172.16/12 CIDR block)
▶ 192.168.0.0 – 192.168.255.255 (192.168/16 CIDR block)
Once the Server is installed and configured, start the installer!

cd /opt/oscar
./install_cluster <device>

This will:

- Install all required RPMs
- update the /etc/hosts file with OSCAR aliases
- update the /etc/exports file
- update system initialization scripts (/etc/rc.d/init.d/)
- restart any affected services

Then the installer GUI will be launched.
The OSCAR Installation Wizard:

- Select your packages

Welcome to the OSCAR Wizard!
OSCAR Version: 5.1
- INSTALL MODE -

Step 0: Manage OSCAR Repositories... Help
Step 1: Select OSCAR Packages To Install... Help
Step 2: Configure Selected OSCAR Packages... Help
Step 3: Install OSCAR Server Packages Help
Step 4: Build OSCAR Client Image... Help
Step 5: Define OSCAR Clients... Help
Step 6: Setup Networking... Help
Delete OSCAR Clients... Help
Monitor Cluster Deployment Help

Before continuing, network boot all of your nodes. Once they have completed installation, reboot them from the hard drive. Once all the machines and their ethernet adaptors are up, move on to the next step.

Step 7: Complete Cluster Setup Help
Step 8: Test Cluster Setup Help
Quit
The OSCAR Installation Wizard:

- Select your packages
- Configure the packages
The OSCAR Installation Wizard:

- Select your packages
- Configure the packages
- Install the Server packages
The OSCAR Installation Wizard:

- Select your packages
- Configure the packages
- Install the Server packages
- Build an image for the compute nodes
The OSCAR Installation Wizard:

- Select your packages
- Configure the packages
- Install the Server packages
- Build an image for the compute nodes
- Define the compute nodes
The OSCAR Installation Wizard:

- Select your packages
- Configure the packages
- Install the Server packages
- Build an image for the compute nodes
- Define the compute nodes
- Configure networking

![OSCAR Wizard screenshot]
The OSCAR Installation Wizard:

- Select your packages
- Configure the packages
- Install the Server packages
- Build an image for the compute nodes
- Define the compute nodes
- Configure networking
- Complete the setup
The OSCAR Installation Wizard:

- Select your packages
- Configure the packages
- Install the Server packages
- Build an image for the compute nodes
- Define the compute nodes
- Configure networking
- Complete the setup
- Test the cluster!
Build Client Image
▶ Choose an image name
Build Client Image

- Choose an image name
- Chose a package file
Build Client Image

- Choose an image name
- Chose a package file
- Chose a Target Distribution
Build Client Image

- Choose an image name
- Chose a package file
- Chose a Target Distribution
- Specify package repositories
Cluster Management

Common Management Tools

OSCAR

Build Client Image

▶ Choose an image name
▶ Chose a package file
▶ Chose a Target Distribution
▶ Specify package repositories

▶ Specify Disk Partition file

![OSCAR Client Image Build Window](image)
Build Client Image

- Choose an image name
- Chose a package file
- Chose a Target Distribution
- Specify package repositories
- Specify Disk Partition file
- Pick IP assignment method
Build Client Image

- Choose an image name
- Chose a package file
- Chose a Target Distribution
- Specify package repositories
- Specify Disk Partition file
- Pick IP assignment method
- Pick Post Install action

![Build OSCAR Client Image](image.png)

Fill out the following fields to build a System Installation Suite image. If you need help on any field, click the help button next to it.

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image Name</td>
<td>oscarimage</td>
</tr>
<tr>
<td>Package File</td>
<td>/opt/oscar/oscarsamples/rhel</td>
</tr>
<tr>
<td>Target Distribution</td>
<td>redhat-el-as-4-i386</td>
</tr>
<tr>
<td>Package Repositories</td>
<td>/ftplibboot/oscar/common-rpms</td>
</tr>
<tr>
<td>Disk Partition File</td>
<td>/opt/oscar/oscarsamples/fde.</td>
</tr>
<tr>
<td>IP Assignment Method</td>
<td>static</td>
</tr>
<tr>
<td>Post Install Action</td>
<td>reboot</td>
</tr>
</tbody>
</table>
Define OSCAR Clients (Compute Nodes)

- Pick the image to install

NOTE: You may only define 254 clients at a time!
Define OSCAR Clients (Compute Nodes)

- Pick the image to install
- Specify the domain name

NOTE: You may only define 254 clients at a time!
Define OSCAR Clients (Compute Nodes)

- Pick the image to install
- Specify the domain name
- Specify the base hostname

NOTE: You may only define 254 clients at a time!
Define OSCAR Clients (Compute Nodes)

- Pick the image to install
- Specify the domain name
- Specify the base hostname
- Specify the number of hosts

NOTE: You may only define 254 clients at a time!
Define OSCAR Clients (Compute Nodes)

- Pick the image to install
- Specify the domain name
- Specify the base hostname
- Specify the number of hosts
- Specify first number to append to the base hostname

NOTE: You may only define 254 clients at a time!
Define OSCAR Clients (Compute Nodes)

- Pick the image to install
- Specify the domain name
- Specify the base hostname
- Specify the number of hosts
- Specify first number to append to the base hostname
- Specify the “padding”

NOTE: You may only define 254 clients at a time!
Define OSCAR Clients (Compute Nodes)

- Pick the image to install
- Specify the domain name
- Specify the base hostname
- Specify the number of hosts
- Specify first number to append to the base hostname
- Specify the “padding”
- Specify the starting IP

NOTE: You may only define 254 clients at a time!
Define OSCAR Clients (Compute Nodes)

- Pick the image to install
- Specify the domain name
- Specify the base hostname
- Specify the number of hosts
- Specify first number to append to the base hostname
- Specify the “padding”
- Specify the starting IP
- Specify the subnet mask

NOTE: You may only define 254 clients at a time!
Define OSCAR Clients (Compute Nodes)

- Pick the image to install
- Specify the domain name
- Specify the base hostname
- Specify the number of hosts
- Specify first number to append to the base hostname
- Specify the “padding”
- Specify the starting IP
- Specify the subnet mask
- Specify the default gateway

NOTE: You may only define 254 clients at a time!
Setup OSCAR Networking

- Collect MAC Addresses
Setup OSCAR Networking

- Collect MAC Addresses
- Optionally tweak SI installation mode
Setup OSCAR Networking

- Collect MAC Addresses
- Optionally tweak SI installation mode
- Build Boot CD
- OR
- Setup Network Boot
Setup OSCAR Networking

- Collect MAC Addresses
- Optionally tweak SI installation mode
- Build Boot CD
 OR
- Setup Network Boot
- Optionally choose to Use Your Own Kernel (UYOK)
Finishing Up!

- Go to “Monitor Cluster Deployment” to monitor the progress of the installation.
Finishing Up!

- Go to “Monitor Cluster Deployment” to monitor the progress of the installation.
- Reboot the compute nodes.
Finishing Up!

- Go to “Monitor Cluster Deployment” to monitor the progress of the installation.
- Reboot the compute nodes.
- Go to “Complete Cluster Setup”
Finishing Up!

- Go to “Monitor Cluster Deployment” to monitor the progress of the installation.
- Reboot the compute nodes.
- Go to “Complete Cluster Setup”
- Run the OSCAR Test suite (unless you’re feeling brave!)
Finishing Up!

► Go to “Monitor Cluster Deployment” to monitor the progress of the installation.
► Reboot the compute nodes.
► Go to “Complete Cluster Setup”
► Run the OSCAR Test suite (unless you’re feeling brave!)
► Enjoy your new cluster!
Really, Its *that* simple!

- OSCAR comes with quite a few “standard” cluster packages.
Really, Its *that* simple!

- OSCAR comes with quite a few “standard” cluster packages.
- OSCAR uses SystemImager
Really, Its *that* simple!

- OSCAR comes with quite a few “standard” cluster packages.
- OSCAR uses SystemImager
- SystemImager is Good™
Really, Its *that* simple!

- OSCAR comes with quite a few “standard” cluster packages.
- OSCAR uses SystemImager
- SystemImager is Good™
- RPM packages may be added by placing them in the appropriate directory, rebuilding the image, and rebooting the nodes.
ROCKS Information

Vital Statistics:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Version:</td>
<td>5.0</td>
</tr>
<tr>
<td>Date:</td>
<td>November 12, 2006</td>
</tr>
<tr>
<td>New development:</td>
<td>September 2008</td>
</tr>
<tr>
<td>Distribution Formats:</td>
<td>tar.gz</td>
</tr>
<tr>
<td>URL:</td>
<td>http://oscar.openclustergroup.org/</td>
</tr>
</tbody>
</table>
ROCKS cluster distribution features:

- Supports X86, X86_64 processors
ROCKS cluster distribution features:

- Supports X86, X86_64 processors
- Supports Ethernet networks
ROCKS cluster distribution features:

- Supports X86, X86_64 processors
- Supports Ethernet networks
- Supports Specialized networks and components (Myrinet, Infiniband, nVidia GPU)
Beginning the ROCKS Installation

For the Installation, you will need:

- Kernel/Boot Roll CD
- Base Roll CD
- Web Server Roll CD
Beginning the ROCKS Installation

For the Installation, you will need:

- Kernel/Boot Roll CD
- Base Roll CD
- Web Server Roll CD
- OS Roll CD - Disk 1
- OS Roll CD - Disk 2 OR

ALL Red Hat Enterprise Linux 5 update CDs
ALL CentOS 5 update 1 CDs
ALL Scientific Linux 5 update 1 CDs
Beginning the ROCKS Installation

For the Installation, you will need:

- Kernel/Boot Roll CD
- Base Roll CD
- Web Server Roll CD
- OS Roll CD - Disk 1
- OS Roll CD - Disk 2 OR
- ALL Red Hat Enterprise Linux 5 update CDs
- ALL CentOS 5 update 1 CDs
- ALL Scientific Linux 5 update 1 CDs
Beginning the ROCKS Installation

For the Installation, you will need:

- Kernel/Boot Roll CD
- Base Roll CD
- Web Server Roll CD
- OS Roll CD - Disk 1
- OS Roll CD - Disk 2 OR
- **ALL** Red Hat Enterprise Linux 5 update CDs
- **ALL** CentOS 5 update 1 CDs
- **ALL** Scientific Linux 5 update 1 CDs

- Boot the “Kernel/Boot Roll CD” on the server
- You should see:
 - **Frontend**
 - `# frontend`
 - For a new installation.
 - `# frontend rescue`
 - To boot into rescue mode.
 - **Client**
 - `do nothing (default)`
 - `boot: frontend`
Beginning the ROCKS Installation

For the Installation, you will need:

- Kernel/Boot Roll CD
- Base Roll CD
- Web Server Roll CD
- OS Roll CD - Disk 1
- OS Roll CD - Disk 2 OR
- **ALL** Red Hat Enterprise Linux 5 update CDs
- **ALL** CentOS 5 update 1 CDs
- **ALL** Scientific Linux 5 update 1 CDs

- Boot the “Kernel/Boot Roll CD” on the server
- You should see:
 - **Frontend**
 - # frontend
 - For a new installation.
 - # frontend rescue
 - To boot into rescue mode.
- **Client**
 - do nothing (default)
- boot: frontend
- Type “front-end” to begin the installation
Other Popular Cluster Management tools

- Xcat
- openMosix (RIP March 1, 2008)
- LinuxPMI Continuation of 2.6 branch of openMosix (*NOT* Single System Image)
- OpenSSI
- Scyld
- IBM’s CSM
- Also notable: Sandia’s CIT²

²It may not be the most popular, but it is well designed and pretty darn cool!
What is “Change Control”?

- Automatically manage configuration files

... Automate and reduce the headache of administration!
What is “Change Control”?

- Automatically manage configuration files
- Take care of maintenance tasks like running backups

... Automate and reduce the headache of administration!
What is “Change Control”?

- Automatically manage configuration files
- Take care of maintenance tasks like running backups
- Manage things like “cron jobs” in a centralized place.

... Automate and reduce the headache of administration!
Cfengine Information

<table>
<thead>
<tr>
<th>Vital Statistics:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Version:</td>
<td>2.2.8</td>
</tr>
<tr>
<td>Date:</td>
<td>August 5, 2008</td>
</tr>
<tr>
<td>Distribution Formats:</td>
<td>tar.gz</td>
</tr>
<tr>
<td>URL:</td>
<td>http://www.cfengine.org/</td>
</tr>
</tbody>
</table>
What is Cfengine good for?

- Ensure proper versions of software are installed
What is Cfengine good for?

- Ensure proper versions of software are installed
- Template-based creation of configuration files
What is Cfengine good for?

- Ensure proper versions of software are installed
- Template-based creation of configuration files
- Verify permissions & ownership of files and directories
What is Cfengine good for?

- Ensure proper versions of software are installed
- Template-based creation of configuration files
- Verify permissions & ownership of files and directories
- Standardize properties (netmask, domain name, etc.) of hosts
What is Cfengine good for?

- Ensure proper versions of software are installed
- Template-based creation of configuration files
- Verify permissions & ownership of files and directories
- Standardize properties (netmask, domain name, etc.) of hosts
- Ensure checksums of files
What is Cfengine good for?

- Ensure proper versions of software are installed
- Template-based creation of configuration files
- Verify permissions & ownership of files and directories
- Standardize properties (netmask, domain name, etc.) of hosts
- Ensure checksums of files
- Check disk capacity
Installing Cfengine

- tar zxf cfengine-2.2.8.tar.gz
- cd cfengine-2.2.8
- ./configure
- make
- make install
- test: /usr/local/sbin/cfagent -v
Getting Started with Cfengine

In order to get started with Cfengine, we will need 3 things:

- A crontab entry to run cfexecd periodically\(^3\)

 \[0 * * * * /usr/local/sbin/cfexecd -F\]

\(^3\)Cfengine can also be run as a daemon.
Getting Started with Cfengine

In order to get started with Cfengine, we will need 3 things:

▶ A crontab entry to run cfexedc periodically\(^3\)
 0 * * * * /usr/local/sbin/cfexedc -F

▶ An update.conf file

\(^3\)Cfengine can also be run as a daemon.
Getting Started with Cfengine

In order to get started with Cfengine, we will need 3 things:

- A crontab entry to run cfexecd periodically\(^3\)

 0 * * * * /usr/local/sbin/cfexecd -F

- An update.conf file

- A cfagent.conf file

\(^3\)Cfengine can also be run as a daemon.
Cluster Management

Software Management/Change Control

Getting Started with Cfengine

update.conf — control section

Distribute the configuration files

control:
 # distribute the files, then clean up our mess
 workdir = (/var/cfengine)
 actionsequence = (copy tidy)
 policyhost = (cfengine.hpc.unm.edu) # master host
 domain = (hpc.unm.edu)
 master_cfinput = (/cfengine/inputs)
 sysadmin = root@hpc.unm.edu
cfagent.conf — control section

control:
 domain = (hpc.unm.edu)
 netmask = (255.255.252.0)
 sysadm = (root@hpc.unm.edu)
 timezone = (MST)
 actionsequence = (mountall # mount filesystems in /etc/fstab
 netconfig # check the network interface
 resolve # check the DNS resolver
 tidy # ‘‘tidy’’ Cfengine logfiles
 files # check file permissions
 directories # ensure directories exist
 processes) # check processes)
Getting Started with Cfengine

cfagent.conf — files and directories section

check important files
files:
 /etc/passwd mode=644 owner=root action=fixall
 /etc/shadow mode=600 owner=root action=fixall
 /var/spool/torque/pbs_environment mode=644 owner=root action=fixall
 /var/spool/torque/server_name mode=644 owner=root action=fixall

check that TORQUE directories exist
directories:
 /var/spool/torque/ owner=root mode=755 action=fixall
 /var/spool/torque/aux/ owner=root mode=755 action=fixall
 /var/spool/torque/mom_logs/ owner=root mode=755 action=fixall

(etc.)
cfagent.conf — processes section

Here we define processes we want to ensure are running
We could also define ones we wanted to kill or restart
Strings are regular expressions used to match the name
of the process
processes:
 "pbs_server" matches=1 # ensure PBS is running
 "maui" matches=1 # ensure Maui is running
Popular Parallel Shells

- PDSH
- Dancer’s DSH
- Clusterit
- C3 tools
PDSH Information

<table>
<thead>
<tr>
<th>Vital Statistics:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Version:</td>
<td>2.16</td>
</tr>
<tr>
<td>Date:</td>
<td>April 3, 2008</td>
</tr>
<tr>
<td>“Parallelism”:</td>
<td>“sliding window” parallel algorithm</td>
</tr>
<tr>
<td>Language:</td>
<td>C</td>
</tr>
<tr>
<td>Distribution Formats:</td>
<td>RPM, tar.gz</td>
</tr>
<tr>
<td>URL:</td>
<td>https://computing.llnl.gov/linux/pdsh.html</td>
</tr>
</tbody>
</table>
PDSH Remote command modules

These are ways of accessing the remote nodes. Tune as per your security/performance requirements!

- RSH
PDSH Remote command modules

These are ways of accessing the remote nodes. Tune as per your security/performance requirements!

- RSH
- SSH
PDSH Remote command modules

These are ways of accessing the remote nodes. Tune as per your security/performance requirements!

- RSH
- SSH
- Kerberos
PDSH Remote command modules

These are ways of accessing the remote nodes. Tune as per your security/performance requirements!

- RSH
- SSH
- Kerberos
- MRSH, QSH, MQSH, XCPU (*whatever those are ;)*
PDSH Node Specification

- Specify a list of hosts:
 pdsh -w node01,node05,node17 -- command
PDSH Node Specification

- Specify a list of hosts:
  ```bash
  pdsh -w node01,node05,node17 -- command
  ```

- Specify a range of hosts:
  ```bash
  pdsh -w node01-node100 -- command
  ```
PDSH Node Specification

- Specify a list of hosts:
 `pdsh -w node01,node05,node17 -- command`

- Specify a range of hosts:
 `pdsh -w node01-node100 -- command`

- Specify a range of hosts, excluding a set in the middle:
 `pdsh -w node01-node100 -x node20-node30 -- command`
PDSH Node Specification (cont.)

- Specify a nodes in a netgroup “netgroup”:
 pdsh -g netgroup -- command
PDSH Node Specification (cont.)

- Specify a nodes in a netgroup “netgroup”:
 `pdsh -g netgroup -- command`

- Exclude nodes in the netgroup “netgroup”:
 `pdsh -X netgroup -- command`
PDSH Node Specification (cont.)

- Specify a nodes in a netgroup “netgroup”:
 pdsh -g netgroup -- command

- Exclude nodes in the netgroup “netgroup”:
 pdsh -X netgroup -- command

- Execute a command on all nodes in a file:
 export WCOLL=/path/to/node-file
 pdsh -- command
Dancer’s DSH Information

<table>
<thead>
<tr>
<th>Vital Statistics:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Version:</td>
<td>0.25.9</td>
</tr>
<tr>
<td>Date:</td>
<td>August 15, 2007</td>
</tr>
<tr>
<td>“Parallelism”:</td>
<td>“Hierarchical invocation technique”</td>
</tr>
<tr>
<td></td>
<td>“4 nodes accessing 4 nodes” ...</td>
</tr>
<tr>
<td>Language:</td>
<td>C</td>
</tr>
<tr>
<td>Distribution Formats:</td>
<td>DEB, .tar.gz</td>
</tr>
<tr>
<td>URL:</td>
<td>http://www.netfort.gr.jp/~dancer/software/dsh.html.en</td>
</tr>
</tbody>
</table>
Dancer’s DSH Node Specification

- Use the global nodes file, /etc/dsh/machines.list:
 dsh -a -c -- command
Dancer’s DSH Node Specification

- Use the global nodes file, /etc/dsh/machines.list:

 dsh -a -c -- command

- Use the list of nodes for “Rack 1” stored in $HOME.dsh/group/rack1:

 dsh -g rack1 -c -- command
Clusterit Information

<table>
<thead>
<tr>
<th>Vital Statistics:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version: 2.5</td>
</tr>
<tr>
<td>Date: August 15, 2007</td>
</tr>
<tr>
<td>“Parallelism”: N-way Fanout</td>
</tr>
<tr>
<td>Language: C</td>
</tr>
<tr>
<td>Distribution Formats: .tar.gz</td>
</tr>
<tr>
<td>URL: http://clusterit.sourceforge.net/</td>
</tr>
</tbody>
</table>
Cluster Management

Clusterit Node Specification (Groups and Lumps)

- Groups are sets of nodes:
Clusterit Node Specification (Groups and Lumps)

- Groups are sets of nodes:
 - GROUP:compute
 - node01
 - node02
Clusterit Node Specification (Groups and Lumps)

- Groups are sets of nodes:
 - GROUP:compute
 - node01
 - node02

- Lumps are sets of groups:
Clusterit Node Specification (Groups and Lumps)

- Groups are sets of nodes:
 - GROUP:compute
 node01
 node02
- Lumps are sets of groups:
 - LUMP:cluster
 compute
 storage
 admin
Cluster Management
 ─ Parallel Shell Tools / Basic Cluster Scripting
 ─ Clusterit

Clusterit Node Specification

- Specify a list of hosts:
 dsh -w node01,node04,node23 -- command
Clusterit Node Specification

- Specify a list of hosts:
 dsh -w node01,node04,node23 -- command

- Exclude a list of hosts:
 dsh -x node03,node09,node17 -- command
Clusterit Node Specification

- Specify a list of hosts:
 \[\text{dsh -w node01,node04,node23 -- command} \]

- Exclude a list of hosts:
 \[\text{dsh -x node03,node09,node17 -- command} \]

- Specify a group of hosts:
 \[\text{export CLUSTER=/path/to/nodefile} \]
 \[\text{dsh -g compute -- command} \]
Clusterit Node Specification

- Specify a list of hosts:
 dsh -w node01,node04,node23 -- command

- Exclude a list of hosts:
 dsh -x node03,node09,node17 -- command

- Specify a group of hosts:
 export CLUSTER=/path/to/nodefile
dsh -g compute -- command

- Specify a lump of hosts:
 export CLUSTER=/path/to/nodefile
dsh -g cluster -- command
C3 Information

<table>
<thead>
<tr>
<th>Vital Statistics:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Version:</td>
<td>4.0.1</td>
</tr>
<tr>
<td>Date:</td>
<td>July 15, 2003</td>
</tr>
<tr>
<td>“Parallelism”:</td>
<td>“Sub-Cluster Staging”</td>
</tr>
<tr>
<td>Language:</td>
<td>Python</td>
</tr>
<tr>
<td>Distribution Formats:</td>
<td>RPM, .tar.gz</td>
</tr>
</tbody>
</table>
C3 Cluster Node Specification file format
/etc/c3.conf

Specify a cluster with a head node with an external interface named “external-name” and an internal interface named “node0” and 64 compute nodes named node01-node64.
C3 Cluster Node Specification file format
/etc/c3.conf

- Specify a cluster with a head node with an external interface named “external-name” and an internal interface named “node0” and 64 compute nodes named node01-node64.

- /etc/c3.conf contents:

```bash
cluster my-cluster
{
    external-name:node0    # head node
    node[1-64]            # compute nodes
}
```
C3 Node Specification

- Specify the default cluster:
 cexec command
C3 Node Specification

- Specify the default cluster:
 cexec command

- Specify a subset of nodes in the default cluster:
 cexec :6-53 command
C3 Node Specification

- Specify the default cluster:
 cexec command

- Specify a subset of nodes in the default cluster:
 cexec :6-53 command

- Specify a list of clusters:
 cexec cluster1: cluster2: command
Basic Cluster Scripting

grep is your (best) friend

▶ Find the CPU count on all of the nodes:
 pdsh "cat /proc/cpuinfo | grep processor | wc -l"
Basic Cluster Scripting

grep is your (best) friend

- Find the CPU count on all of the nodes:
 pdsh "cat /proc/cpuinfo | grep processor | wc -l"

- Find nodes with the wrong image version:
 export VER="1.2.3"
 pdsh "cat /etc/image_version | grep \"^${VER}\" || hostname"
More Basic Cluster Scripting

awk is a pretty good friend too!

- Find nodes where the load is greater than 2:
 pdsh uptime | awk '{if($11 > 2.0){print}}'
More Basic Cluster Scripting

awk is a pretty good friend too!

- Find nodes where the load is greater than 2:
  ```bash
  pdsh uptime | awk '{if($11 > 2.0){print}}'
  ```

- Find bad GM counts on all nodes:
  ```bash
  pdsh "/opt/mx/bin/mx_counters | awk '/bad/ {if ($2 > 0) {print;}}'"
  ```
Backup anything you can’t recreate
Backup anything you can recreate but can’t recreate quickly

▶ Use backup anytime it would take longer to rebuild and reconfigure than to restore.

Thanks to Roy Heimbach for contributing this slide!
Backup anything you can’t recreate
Backup anything you can recreate but can’t recreate quickly

▶ Use backup anytime it would take longer to rebuild and reconfigure than to restore.

▶ “Longer” may be in terms of staff time or elapsed time or both.

Thanks to Roy Heimbach for contributing this slide!
Backup anything you can’t recreate
Backup anything you can recreate but can’t recreate quickly

▶ Use backup anytime it would take longer to rebuild and reconfigure than to restore.
▶ “Longer” may be in terms of staff time or elapsed time or both.
▶ Consider:
 ▶ User directories (not scratch!)
 ▶ Libraries and applications you’ve built on site
 ▶ Tcl module files in /usr/share/modules/modulefiles/
 ▶ System configuration files DNS, DHCP, NIS, etc. (Should that be everything in /etc/?)
 ▶ Node images

Thanks to Roy Heimbach for contributing this slide!
Logging/Automated Log Analysis Tools:

- SEC
- Logsurfer+
- splunk
What can we find in our logfiles?

What are we happily ignoring?

▶ Evidence of misconfigurations:
 e.g. “/var/log/lastlog does not exist”
What can we find in our logfiles?
What are we happily ignoring?

- Evidence of misconfigurations:
 e.g. “/var/log/lastlog does not exist”

- Security violations
 e.g. Illegal users
What can we find in our logfiles?
What are we happily ignoring?

- Evidence of misconfigurations:
 e.g. “/var/log/lastlog does not exist”

- Security violations
 e.g. Illegal users

- Hardware/Software errors e.g. Disk failures
Regular Expression Review
Is that line noise?

This is a quick review of Perl Regular Expressions.

- Simple ‘as-is’ text string matching:
- “cat” or “dog”
Regular Expression Review

Is that line noise?

This is a quick review of Perl Regular Expressions.

- Simple ‘as-is’ text string matching:
 - “cat” or “dog”
- Meta-characters:
 - `{}` `[]` `()` `^` `$` `*` `+` `?` \
Regular Expression Meta-characters

- . matches any single character
Regular Expression Meta-characters

- . matches any single character
- * match the previous thing 0 or more times
Regular Expression Meta-characters

- . matches any single character
- * match the previous thing 0 or more times
- + match the previous thing 1 or more times
Regular Expression Meta-characters

- . matches any single character
- * match the previous thing 0 or more times
- + match the previous thing 1 or more times
- ? match the previous thing 1 or 0 times
Regular Expression Meta-characters

- . matches any single character
- * match the previous thing 0 or more times
- + match the previous thing 1 or more times
- ? match the previous thing 1 or 0 times
- ^ matches the beginning of the line

\[\text{\textbackslash \textasciitilde}\] escapes the next character
Regular Expression Meta-characters

- . matches any single character
- * match the previous thing 0 or more times
- + match the previous thing 1 or more times
- ? match the previous thing 1 or 0 times
- ^ matches the beginning of the line
- $ matches the end of the line
Regular Expression Meta-characters

- . matches any single character
- * match the previous thing 0 or more times
- + match the previous thing 1 or more times
- ? match the previous thing 1 or 0 times
- ^ matches the beginning of the line
- $ matches the end of the line
- \'escapes’ the next character
Regular Expression Meta-characters

- . matches any single character
- * matches the previous thing 0 or more times
- + matches the previous thing 1 or more times
- ? matches the previous thing 1 or 0 times
- ^ matches the beginning of the line
- $ matches the end of the line
- \ escapes’ the next character
- [] specifies a set or range of characters:
 eg. [a-z,A-Z,0-9] would match all alphanumeric characters
Regular Expression Meta-characters (cont.)

- \{n\} match the previous thing exactly “n” times

- ▶ match the previous thing exactly “n” times

- ▶ match the previous thing at least “n” times

- ▶ match the previous thing at least “n” times, but not more than “m” times

- ▶ () specifies groups of things or things to "save" the first group will be saved in $1, the second in $2, etc.

- ▶ | specifies "OR" inside of a group

e.g. (cat | dog) would match either "cat" or "dog"
Regular Expression Meta-characters (cont.)

- `{n}` match the previous thing exactly “n” times
- `{n,}` match the previous thing at least “n” times
Regular Expression Meta-characters (cont.)

- \{n\} match the previous thing exactly “n” times
- \{n,\} match the previous thing at least “n” times
- \{n,m\} match the previous thing at least “n” times, but not more than “m” times
Regular Expression Meta-characters (cont.)

- `{n}` match the previous thing exactly “n” times
- `{n,}` match the previous thing at least “n” times
- `{n,m}` match the previous thing at least “n” times, but not more than “m” times
- `()` specifies groups of things or things to “save” the first group will be saved in 1, the second in 2, etc.
Regular Expression Meta-characters (cont.)

- `{n}` match the previous thing exactly “n” times
- `{n,}` match the previous thing at least “n” times
- `{n,m}` match the previous thing at least “n” times, but not more than “m” times
- `()` specifies groups of things or things to “save” the first group will be saved in 1, the second in 2, etc.
- `|` specifies “OR” inside of a group eg. (cat|dog) would match either “cat” or “dog”
SEC Information

<table>
<thead>
<tr>
<th>Vital Statistics:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Version:</td>
<td>2.4.2</td>
</tr>
<tr>
<td>Date:</td>
<td>February 1, 2008</td>
</tr>
<tr>
<td>Language:</td>
<td>Perl</td>
</tr>
<tr>
<td>Distribution Formats:</td>
<td>.tar.gz, DEB, RPM, FreeBSD and OpenBSD ports, Gentoo portage</td>
</tr>
<tr>
<td>URL:</td>
<td>http://www.estpak.ee/~risto/sec/</td>
</tr>
</tbody>
</table>
Quick intro to SEC:

SEC Components

- Messages
 Single lines of text in a logfile
Quick intro to SEC:

SEC Components

- Messages
 Single lines of text in a logfile

- Rules
 Do something in response to an incoming Message
Quick intro to SEC:
SEC Components

- Messages
 Single lines of text in a logfile

- Rules
 Do something in response to an incoming Message

- Contexts
 Passive structures to store Messages
Default SEC Rule
Match all messages and print them

Print all messages
type=single
ptype=regexp
pattern=.*
desc=unmatched message: $0 # note $0 is the entire message
action=logonly

This, or something like it, should be the last rule in your ruleset
SEC Filtering Rule

Ignore messages we’re expecting

This machine has 4 processors
Ignore messages reporting what we expect!
type=single
ptype=RegExp
pattern=kernel: Total of 4 processors activated
desc=correct processors initialized
action=None
SEC Responding to messages

Sound the alert!

This machine has 4 processors
Report any number other than that!
report_problem.sh is a script we wrote to report this
to our admins

type=single
ptype=RegExp
pattern=(\S+) kernel: Total of (\d+) processors activated
desc=incorrect processor count: $2 on host: $1
action=shellcmd report_problem.sh $1 $2
SEC Contexts and Correlation
Finding, Blocking, and Reporting on “SSH scanners”

Store "Invalid user" messages from this host unless we’re blocking it
type=single
continue = TakeNext
desc = invalid login from host $2
ptype=regexp
pattern = ^\S+\s+\S+\s+\S+\s+\S+\s+sshd\[[\d+\]: Invalid user (\S+) from (\S+)$
context = (!(block_bad_ssh-$2))
action=add bad_ssh-$2

Block the host if we’ve gotten 10 "Invalid user" messages in a day
type=SingleWithThreshold
desc = invalid login from host $2
ptype=regexp
pattern = ^\S+\s+\S+\s+\S+\s+\S+\s+sshd\[[\d+\]: Invalid user (\S+) from (\S+)$
thresh=3
action=create block_bad_ssh-$2; \
 shellcmd iptables -A INPUT --source $2 -j REJECT ; \
 report bad_ssh-$2 /usr/adm/bin/report-bad-host.pl $2 ; \
 delete bad_ssh-$2
window=10000000
Logsurfer+ Information:

<table>
<thead>
<tr>
<th>Vital Statistics:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Version:</td>
<td>1.7</td>
</tr>
<tr>
<td>Date:</td>
<td>December 2006</td>
</tr>
<tr>
<td>Language:</td>
<td>C</td>
</tr>
<tr>
<td>Distribution Formats:</td>
<td>.tar.gz</td>
</tr>
</tbody>
</table>
System and Cluster Security!
Watch Out!

- Identify the Problem
- Security Strategies
- Dealing with Weaknesses
- Cluster Network Topologies
- Cluster Specific Issues
- Linux Tricks
- Checking Your Work
Define the Enemy

- Data thieves
Define the Enemy

- Data thieves
- Resource thieves
Define the Enemy

- Data thieves
- Resource thieves
- Hackers there for various reasons
Define the Enemy

- Data thieves
- Resource thieves
- Hackers there for various reasons
- Curies script kiddies
Define the Enemy

- Data thieves
- Resource thieves
- Hackers there for various reasons
- Curies script kiddies
- Malicious script kiddies
Attack Vectors

- Remote Attacks:
 Network Services allow access to the machine
Attack Vectors

- Remote Attacks:
 Network Services allow access to the machine

- Local Attacks:
 Insecure Privileged Binaries allow Privilege escalation
Security Strategies

...besides cutting the wire

▷ Secure Communication
Security Strategies

... besides cutting the wire

- Secure Communication
- Hunt and kill unneeded services
Security Strategies

... besides cutting the wire

- Secure Communication
- Hunt and kill unneeded services
- Application configuration
Security Strategies

... besides cutting the wire

- Secure Communication
- Hunt and kill unneeded services
- Application configuration
- Protective Mechanisms
Identifying Weaknesses

The key here is to strike a balance between security and useability

- Identify and categorize running services
 Are they *Really* needed?
Identifying Weaknesses

The key here is to strike a balance between security and usability.

- Identify and categorize running services
 Are they *Really* needed?

- Identify sensitive information
 Passwords, Data, etc.
Identifying Weaknesses

The key here is to strike a balance between security and useability

- Identify and categorize running services
 Are they *Really* needed?

- Identify sensitive information
 Passwords, Data, etc.

- Identify protective mechanisms
 TCPwrappers, iptables, firewall, etc.
Limiting Weaknesses

- Local weaknesses:
 - Limit use of installed privileged binaries
 - Remove setuid/setgid bits
 - If you don't use it, get rid of it!
 - Close unused ports
 - Limit access to ports
 - If you don't use it, get rid of it!
Limiting Weaknesses

- **Local weaknesses:**
 - Limit use of installed privileged binaries
Limiting Weaknesses

- Local weaknesses:
 - Limit use of installed privileged binaries
 - Removed setuid/setgid bits
Limiting Weaknesses

- Local weaknesses:
- Limit use of installed privileged binaries
- Removed setuid/setgid bits
- If you don’t use it, get rid of it!
Limiting Weaknesses

- Local weaknesses:
 - Limit use of installed privileged binaries
 - Removed setuid/setgid bits
 - If you don’t use it, get rid of it!
- Remote weaknesses:
Limiting Weaknesses

- Local weaknesses:
- Limit use of installed privileged binaries
- Removed setuid/setgid bits
- If you don’t use it, get rid of it!
- Remote weaknesses:
- Close unused ports
Limiting Weaknesses

- Local weaknesses:
 - Limit use of installed privileged binaries
 - Removed setuid/setgid bits
 - If you don’t use it, get rid of it!
- Remote weaknesses:
 - Close unused ports
 - Limit access to ports
Limiting Weaknesses

- Local weaknesses:
 - Limit use of installed privileged binaries
 - Removed setuid/setgid bits
 - If you don’t use it, get rid of it!
- Remote weaknesses:
 - Close unused ports
 - Limit access to ports
 - If you don’t use it, get rid of it!
Finding services

They *can’t* hide!

- `inetd(8)` and `xinetd(8)` configuration files
Finding services
They *can’t* hide!

- `inetd(8)` and `xinetd(8)` configuration files
- `chkconfig(8)`
Finding services

They can’t hide!

- inetd(8) and xinetd(8) configuration files
- chkconfig(8)
- init(8) scripts
Finding services

They *can’t* hide!

- `inetd(8)` and `xinetd(8)` configuration files
- `chkconfig(8)`
- `init(8)` scripts
- `ps(1)`
Finding services
They *can’t* hide!

- inetd(8) and xinetd(8) configuration files
- chkconfig(8)
- init(8) scripts
- ps(1)
- lsof(8) -i
Finding services
They can’t hide!

- `inetd(8)` and `xinetd(8)` configuration files
- `chkconfig(8)`
- `init(8)` scripts
- `ps(1)`
- `lsof(8) -i`
- `nmap(1)`
Killing Services

- `kill(1)`
Killing Services

- `kill(1)`
- `chkconfig(8)`
Killing Services

- kill(1)
- chkconfig(8)
- init(8) scripts
Killing Services

- `kill(1)`
- `chkconfig(8)`
- `init(8) scripts`
- `inetd(8) and xinetd(8) configuration files`
Killing Services

- `kill(1)`
- `chkconfig(8)`
- `init(8)` scripts
- `inetd(8)` and `xinetd(8)` configuration files
- `chmod(1)`
Common Cluster Services

- Login Service(s)
Common Cluster Services

- Login Service(s)
- File Transfer Service(s)
Common Cluster Services

- Login Service(s)
- File Transfer Service(s)
- File Service(s)
Common Cluster Services

- Login Service(s)
- File Transfer Service(s)
- File Service(s)
- Time Service
Cluster Management

Security plans/procedures, Risk Analysis

Common Cluster Services

- Login Service(s)
- File Transfer Service(s)
- File Service(s)
- Time Service
- Domain name service (DNS)
Common Cluster Services

- Login Service(s)
- File Transfer Service(s)
- File Service(s)
- Time Service
- Domain name service (DNS)
- Common Configuration Services
 - DHCP
 - NIS
 - LDAP
 - etc.
Login Services

- rlogin, telnet, etc.
Login Services

- rlogin, telnet, etc.
- SSH
 - Kerberized versions available
 - PKI (GSI) versions available
SSH Key Setup

```
ssh-keygen -N "" -f /tmp/key
# if you want password-less access
cp --force /tmp/key /root/.ssh/identity
rm --force /tmp/key
cat /tmp/key.pub >>/nfs/shared/authorized_keys
pdsh "cp /nfs/shared/authorized_keys /root/.ssh/"
```
Secure File Transfer

- `scp(1)`
 - Encrypted connections
 - Kerberized versions available
 - Uses `ssh(1)`
Cluster Management

Security plans/procedures, Risk Analysis

Secure File Transfer

- scp(1)
 - Encrypted connections
 - Kerberized versions available
 - Uses ssh(1)

- sftp(1)
 - “Simular” to ftp(1)
 - Encrypted connections
 - Kerberized versions available
 - Uses ssh(1)
 - Clumsy!
Secure X11 Connections

- Use ssh to “tunnel” X11 connections safely
Secure X11 Connections

- Use ssh to “tunnel” X11 connections safely
- default ssh configuration files disable this
Secure X11 Connections

- Use ssh to “tunnel” X11 connections safely
- default ssh configuration files disable this
- To enable “X11 Forwarding”:
 - In sshd_config add:
 X11Forwarding yes
 - In ssh_config add:
 ForwardAgent yes
 ForwardX11 yes
Using my admin tools from home...
SSH tunnels for the win!

▶ EVERYONE has used an X11 tunnel over SSH
Using my admin tools from home...
SSH tunnels for the win!

- EVERYONE has used an X11 tunnel over SSH
- Have you ever forwarded something else?
Using my admin tools from home...

SSH tunnels for the win!

- *EVERYONE* has used an X11 tunnel over SSH
- Have you ever forwarded something else?
- Run administration tools from “inside” the firewall, but still at home
Using my admin tools from home...
SSH tunnels for the win!

- EVERYONE has used an X11 tunnel over SSH
- Have you ever forwarded something else?
- Run administration tools from “inside” the firewall, but still at home
- Forward arbitrary ports – Encrypted!
Using my admin tools from home...
SSH tunnels for the win!

- Everyone has used an X11 tunnel over SSH
- Have you ever forwarded something else?
- Run administration tools from “inside” the firewall, but still at home
- Forward arbitrary ports – Encrypted!
- ssh -v -L local-port:remote-machine:remote-port local-machine -l root
Using my admin tools from home...
SSH tunnels for the win!

- EVERYONE has used an X11 tunnel over SSH
- Have you ever forwarded something else?
- Run administration tools from “inside” the firewall, but still at home
- Forward arbitrary ports – Encrypted!
- `ssh -v -L local-port:remote-machine:remote-port local-machine -l root`
- `ssh -v -L 1178:service1:1178 pq-admin.alliance.unm.edu -l root`
Network Topologies and Packet Filtering

- Public Network Topology VS.
- Private Network Topology
Public Network Topology

The *easy* way...

- Simpler to set up
Public Network Topology
The easy way...

- Simpler to set up
- Allows direct access to compute nodes
Public Network Topology

The *easy* way…

- Simpler to set up
- Allows direct access to compute nodes
- Worse overall cluster security
Public Network Topology
The easy way...

- Simpler to set up
- Allows direct access to compute nodes
- Worse overall cluster security
- ALL nodes need packet filtering, security tweaks
Public Network Topology
The easy way...

- Simpler to set up
- Allows direct access to compute nodes
- Worse overall cluster security
- ALL nodes need packet filtering, security tweaks
- All nodes are potential targets
Public Network Topology

The easy way...

- Simpler to set up
- Allows direct access to compute nodes
- Worse overall cluster security
- *ALL* nodes need packet filtering, security tweaks
- All nodes are potential targets
- Better network throughput
Private Network Topology

Might be worth the extra headache

- Better security for entire cluster
Cluster Management

- Security plans/procedures, Risk Analysis
- Network Topologies and Packet Filtering

Private Network Topology

Might be worth the extra headache

- Better security for entire cluster
- Relaxed security on compute nodes
Private Network Topology

Might be worth the extra headache

- Better security for entire cluster
- Relaxed security on compute nodes
- Only login/admin nodes on public network
Private Network Topology

Might be worth the extra headache

- Better security for entire cluster
- Relaxed security on compute nodes
- Only login/admin nodes on public network
- Compute/storage nodes access outside network via NAT
Private Network Topology

Might be worth the extra headache

- Better security for entire cluster
- Relaxed security on compute nodes
- Only login/admin nodes on public network
- Compute/storage nodes access outside network via NAT
- Difficult to allow outside access to compute nodes
Packet Filtering

- Stateless:
 Each packet is handled individually
ipchains — (OLD!!! NOBODY uses this anymore!)
Packet Filtering

- **Stateless:**
 Each packet is handled individually
 ipchains — (OLD!!! NOBODY uses this anymore!)

- **Stateful:**
 Each packet is viewed as a part of a session
 iptables — Modern, *probably* in your kernel.
Packet Filtering

- **Stateless:**
 Each packet is handled individually
 ipchains — (OLD!!! *NOBODY uses this anymore!*)

- **Stateful:**
 Each packet is viewed as a part of a session
 iptables — Modern, *probably* in your kernel.

- You can filter based on:
 - Network interface
 - Protocol type
 - Source address and port
 - Destination address and port
 - Other parameters depending upon the protocol
Stateful Packet Filtering

- Keeps track of active connections
Stateful Packet Filtering

- Keeps track of active connections
- Examines each packet based on their context
Stateful Packet Filtering

- Keeps track of active connections
- Examines each packet based on their context
- Can provide a more usable system
Stateful Packet Filtering

- Keeps track of active connections
- Examines each packet based on their context
- Can provide a more useable system
- Controlled by iptables on Linux
Protecting a single machine with IPtables

We’re not doing NAT

- `iptables -A INPUT -m state ESTABLISHED,RELATED -j ACCEPT`
- `iptables -A INPUT -p tcp --destination-port ssh -j ACCEPT`
- `iptables -A INPUT -j REJECT`
Protecting a single machine with IPtables

We’re *not* doing NAT

- `iptables -A INPUT -m state ESTABLISHED,RELATED -j ACCEPT`
- `iptables -A INPUT -p tcp --destination-port ssh -j ACCEPT`
Protecting a single machine with IPtables

We’re not doing NAT

- `iptables -A INPUT -m state ESTABLISHED,RELATED -j ACCEPT`
- `iptables -A INPUT -p tcp --destination-port ssh -j ACCEPT`
- `iptables -A INPUT -j REJECT`
Protecting a network with IPtables

Hiding your cluster behind a NAT

- `iptables -A INPUT -p tcp --destination-port ssh -j ACCEPT`
- `iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT`
- `iptables -A INPUT -i INTERNAL INTERFACE -m state --state NEW -j ACCEPT`
- `iptables -A FORWARD -j REJECT`
Protecting a network with IPtables
Hiding your cluster behind a NAT

- `iptables -A INPUT -p tcp --destination-port ssh -j ACCEPT`
- `iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT`
Protecting a network with IPtables
Hiding your cluster behind a NAT

- `iptables -A INPUT -p tcp --destination-port ssh -j ACCEPT`
- `iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT`
- `iptables -A INPUT -i INTERNAL_INTERFACE -m state --state NEW -j ACCEPT`
Protecting a network with IPtables
Hiding your cluster behind a NAT

- `iptables -A INPUT -p tcp --destination-port ssh -j ACCEPT`
- `iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT`
- `iptables -A INPUT -i INTERNAL_INTERFACE -m state --state NEW -j ACCEPT`
- `iptables -A INPUT -j REJECT`
Protecting a network with IPtables
Hiding your cluster behind a NAT

- `iptables -A INPUT -p tcp --destination-port ssh -j ACCEPT`
- `iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT`
- `iptables -A INPUT -i INTERNAL_INTERFACE -m state --state NEW -j ACCEPT`
- `iptables -A INPUT -j REJECT`
- `iptables -A FORWARD -j REJECT`
/proc Protections

Turning on network stack security features

- Prevent address spoofing:
  ```
  echo 0 > /proc/sys/net/ipv4/conf/*/accept_source_route
  echo 1 > /proc/sys/net/ipv4/conf/*/rp_filter
  echo 1 > /proc/sys/net/ipv4/conf/*/log_martians
  ```
/proc Protections
Turning on network stack security features

- Prevent address spoofing:
  ```
  echo 0 > /proc/sys/net/ipv4/conf/*/accept_source_route
  echo 1 > /proc/sys/net/ipv4/conf/*/rp_filter
  echo 1 > /proc/sys/net/ipv4/conf/*/log_martians
  ```

- Disable ICMP redirects
  ```
  echo 0 > /proc/sys/net/ipv4/conf/*/accept_redirects
  ```
/proc Protections
Turning on network stack security features

- Prevent address spoofing:

 echo 0 > /proc/sys/net/ipv4/conf/*/accept_source_route
 echo 1 > /proc/sys/net/ipv4/conf/*/rp_filter
 echo 1 > /proc/sys/net/ipv4/conf/*/log_martians

- Disable ICMP redirects

 echo 0 > /proc/sys/net/ipv4/conf/*/accept_redirects

- Turn off bootp packet relaying

 echo 0 > /proc/sys/net/ipv4/conf/*/bootp_relay
/proc Protections

Turning on network stack security features

- Prevent address spoofing:

  ```
  echo 0 > /proc/sys/net/ipv4/conf/*/accept_source_route
  echo 1 > /proc/sys/net/ipv4/conf/*/rp_filter
  echo 1 > /proc/sys/net/ipv4/conf/*/log_martians
  ```

- Disable ICMP redirects

  ```
  echo 0 > /proc/sys/net/ipv4/conf/*/accept_redirects
  ```

- Turn off bootp packet relaying

  ```
  echo 0 > /proc/sys/net/ipv4/conf/*/bootp_relay
  ```

- Ignore ICMP bad error responses

  ```
  echo 1 >
  /proc/sys/net/ipv4/icmp_ignore_bogus_error_responses
  ```
/proc Protections

Turning on network stack security features

- Prevent address spoofing:
  ```sh
echo 0 > /proc/sys/net/ipv4/conf/*/accept_source_route
echo 1 > /proc/sys/net/ipv4/conf/*/rp_filter
echo 1 > /proc/sys/net/ipv4/conf/*/log_martians
  ```

- Disable ICMP redirects
  ```sh
echo 0 > /proc/sys/net/ipv4/conf/*/accept_redirects
  ```

- Turn off bootp packet relaying
  ```sh
echo 0 > /proc/sys/net/ipv4/conf/*/bootp_relay
  ```

- Ignore ICMP bad error responses
  ```sh
echo 1 > /proc/sys/net/ipv4/icmp_ignore_bogus_error_responses
  ```

- Enable syncookie protection
  ```sh
echo 1 > /proc/sys/net/ipv4/tcp_syncookies
  ```
Cluster-specific issues

- System backdoors:
 - cron
 - at
Cluster-specific issues

- System backdoors:
 - cron
 - at
- One user per node guarantee
Cluster-specific issues

- System backdoors:
 - cron
 - at

- One user per node guarantee

- Passwordless authentication
One user per node

... or the right number of users per node

- Compute nodes should be wholly allocated to the user(s) that the scheduler has given them to

▶ Only the scheduler knows who owns the nodes

Strategies:
- Modify NIS maps
- Modify /etc/passwd
- PAM modules

We (UNM HPC) use pam pbssimpleauth distributed with TORQUE for most of our systems.
One user per node

... or the right number of users per node

- Compute nodes should be wholly allocated to the user(s) that the scheduler has given them to
- Only the scheduler knows who owns the nodes
One user per node

...or the right number of users per node

- Compute nodes should be wholly allocated to the user(s) that the scheduler has given them to
- Only the scheduler knows who owns the nodes
- Strategies:
 - Modify NIS maps
 - Modify /etc/passwd
 - PAM modules
 We (UNM HPC) use pam_pbssimpleauth distributed with TORQUE for most of our systems.
Passwordless Authentication

- Job launch can’t require passwords
Passwordless Authentication

- Job launch can’t require passwords
- SSH can be used via RSAAuthentication (Public Key)
Passwordless Authentication

- Job launch can’t require passwords
- SSH can be used via RSAAuthentication (Public Key)
- Issues:
 - Management of host keys
 - Management of user keys
RSA vs. DSA (the low-down)

“In DSA, signature generation is faster than signature verification, whereas with the RSA algorithm, signature verification is very much faster than signature generation. . . .”
(http://www.rsasecurity.com/rsalabs/faq/3-4-1.html)

In a nutshell:
RSA can be used for both encryption and digital signatures.
DSA is strictly a digital signature
Checking Your Work

- nmap — port scanner

- Bugtraq — for the seriously hardcore
 The up-and-coming info in the security world
Checking Your Work

- nmap — port scanner
- Nessus — vulnerability scanner
- Bugtraq — for the seriously hardcore
 The up-and-coming info in the security world
Checking Your Work

- nmap — port scanner
- Nessus — vulnerability scanner
- Securityfocus.com
 - Search for your distribution & version
 - Compare vulnerabilities to services you run
 - Compare vulnerabilities to setuid/setgid binaries on your system
- Bugtraq — for the seriously hardcore
 The up-and-coming info in the security world
Finding listening services with lsof:

lsof shows which network files are open:

```
% lsof -i | awk '/LISTEN/ print $1,$(NF-2),$(NF-1)' | sort | uniq
condor_ma TCP service0.nano.alliance.unm.edu:1026
identd TCP *:auth
inetd TCP *:ftp
inetd TCP *:globus-gatekeeper
inetd TCP *:gsiftp
inetd TCP *:klogin
inetd TCP *:kshell
inetd TCP *:login
inetd TCP *:netsaint_remote
```
Finding init.d started services:

To find the services that will be started by default at the current runlevel using /etc/rc.d/init.d scripts:

```bash
# chkconfig --list | grep 'grep :initdefault:
/etc/inittab | awk -F: 'print $2' 'on | awk 'print $1' | sort | column
```

```
atd    isdn    random
autofs  keytable  reconfig
condorg  netfs    sendmail
crond  network    sshd
globus  nfslock    syslog
gm    pbs_mom    verifyd
```
Finding Network visible services

Nmap is your friend!

To find services visible from the network:

```
other-host# nmap host-to-be-looked-at
```

<table>
<thead>
<tr>
<th>Port</th>
<th>State</th>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>21/tcp</td>
<td>open</td>
<td>ftp</td>
</tr>
<tr>
<td>22/tcp</td>
<td>open</td>
<td>ssh</td>
</tr>
<tr>
<td>23/tcp</td>
<td>open</td>
<td>telnet</td>
</tr>
<tr>
<td>111/tcp</td>
<td>open</td>
<td>sunrpc</td>
</tr>
<tr>
<td>113/tcp</td>
<td>open</td>
<td>auth</td>
</tr>
<tr>
<td>513/tcp</td>
<td>open</td>
<td>login</td>
</tr>
<tr>
<td>514/tcp</td>
<td>open</td>
<td>shell</td>
</tr>
<tr>
<td>1026/tcp</td>
<td>open</td>
<td>nterm</td>
</tr>
<tr>
<td>4321/tcp</td>
<td>open</td>
<td>rwhoisw</td>
</tr>
</tbody>
</table>
Regression Testing
Making sure stuff still works

Your regression tests should:

▶ Check your basic system components and tools

Jim’s Rule:
If the cluster doesn’t work for your users, the cluster *doesn’t work*!

4 Jim learned this the hard way!
Regression Testing
Making sure stuff still works

Your regression tests should:

- Check your basic system components and tools
- Check your network(s)

Jim’s Rule:
If the cluster doesn’t work for your users, the cluster *doesn’t work*!

4 Jim learned this the hard way!
Regression Testing
Making sure stuff still works

Your regression tests should:

▶ Check your basic system components and tools
▶ Check your network(s)
▶ Check your important applications

Jim’s Rule:\(^4\)
If the cluster doesn’t work for your users, the cluster *doesn’t work*!

\(^4\) Jim learned this the hard way!
You’re mostly on your own :P

... but it’s just some shell scripts...

▶ You can use tools like Cfengine to automate some of your regression testing
You’re mostly on your own :P
... but it's just some shell scripts...

- You can use tools like Cfengine to automate some of your regression testing
- Your regression tests should be easy to run
You’re mostly on your own :P
... but it’s just some shell scripts...

- You can use tools like Cfengine to automate some of your regression testing
- Your regression tests should be easy to run
- Your regression tests should produce a summary of successes and failures — a report at the end.
You’re mostly on your own :P
... but its just some shell scripts...

- You can use tools like Cfengine to automate some of your regression testing
- Your regression tests should be easy to run
- Your regression tests should produce a summary of successes and failures — a report at the end.
- Consider a suite of shell scripts
You’re mostly on your own :P

... but it's just some shell scripts...

- You can use tools like Cfengine to automate some of your regression testing
- Your regression tests should be easy to run
- Your regression tests should produce a summary of successes and failures — a report at the end.
- Consider a suite of shell scripts
- Should the scripts attempt to repair any errors they find? (season to taste!)
System/Node/Software Change Management Logs

- Change management logs *will* save your backside!
System/Node/Software Change Management Logs

- Change management logs will save your backside!
- System administrators can be sloppy! :P :)
 Where did I put that??!
Change management logs will save your backside!

System administrators can be sloppy! :P :)
Where did I put that??!

Choose a tool that works well for the administrator(s) for the system in question.
Where to keep Change Management Logs?

Somewhere that you will actually keep them!

- A Wiki of some kind
Where to keep Change Management Logs?

Somewhere that you will actually keep them!

- A Wiki of some kind
- Emacs outline mode is nice!
Where to keep Change Management Logs?

Somewhere that you will actually keep them!

- A Wiki of some kind
- Emacs outline mode is nice!
- Really, whatever works for you and your staff!
Where to keep Change Management Logs?

Somewhere that you will actually keep them!

- A Wiki of some kind
- Emacs outline mode is nice!
- Really, whatever works for you and your staff!
- I’ve seen sites alias editor commands in root’s environment to require the admin to make a change management log when s/he edits a config file.
Where to keep Change Management Logs?

Somewhere that you will actually keep them!

▷ A Wiki of some kind
▷ Emacs outline mode is nice!
▷ Really, whatever works for you and your staff!
▷ I’ve seen sites alias editor commands in root’s environment to require the admin to make a change management log when s/he edits a config file.
▷ I won’t tell if you’re using a plain ASCII text file :)

...but if you do, please consider keeping it under some sort of version control.
Where to keep Change Management Logs?

Somewhere that you will actually keep them!

- A Wiki of some kind
- Emacs outline mode is nice!
- Really, whatever works for you and your staff!
- I’ve seen sites alias editor commands in root’s environment to require the admin to make a change management log when s/he edits a config file.
- I won’t tell if you’re using a plain ASCII text file :)
- ...but if you do, please consider keeping it under some sort of version control :)

Cluster Management
System / Node / Software Change Management Logs
How to know when to upgrade, trade–offs
The Great Balancing Act!

- Security upgrades
 VITAL: if you have security concerns!
 VITAL: if you have **A NETWORK CONNECTION!**
How to know when to upgrade, trade-offs

The Great Balancing Act!

- Security upgrades
 VITAL: if you have security concerns!
 VITAL: if you have **A NETWORK CONNECTION!**

- Required features
 - Things needed to enhance the useability/stability of the system
 - Software required by the users
How to know when to upgrade, trade-offs

The Great Balancing Act!

- Security upgrades
 VITAL: if you have security concerns!
 VITAL: if you have **A NETWORK CONNECTION!**

- Required features
 - Things needed to enhance the useability/stability of the system
 - Software required by the users

- Tracking OS development
 - You don’t want to fall *too* far behind
 - Upgrading several major versions is very painful!
 - Keep your upgrades *relatively* small
How to know when to upgrade, trade-offs

The Great Balancing Act!

- Security upgrades
 - VITAL: if you have security concerns!
 - VITAL: if you have **A NETWORK CONNECTION!**

- Required features
 - Things needed to enhance the useability/stability of the system
 - Software required by the users

- Tracking OS development
 - You don’t want to fall *too* far behind
 - Upgrading several major versions is very painful!
 - Keep your upgrades *relatively* small

- Latest development may *not* be what you want!
Clumon Information:

<table>
<thead>
<tr>
<th>Vital Statistics:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Version:</td>
<td>2.0 Alpha</td>
</tr>
<tr>
<td>Distribution Formats:</td>
<td>RPM,.tar.gz</td>
</tr>
<tr>
<td>URL:</td>
<td>http://clumon.ncsa.uiuc.edu/</td>
</tr>
</tbody>
</table>
Clumon
cLUMSy Information:

<table>
<thead>
<tr>
<th>Vital Statistics:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version:</td>
</tr>
<tr>
<td>0.0.0</td>
</tr>
<tr>
<td>Distribution Formats:</td>
</tr>
<tr>
<td>UNRELEASED Bug Jim</td>
</tr>
</tbody>
</table>
cLUMSsy
The Lightweight Universal Monitoring System
... a work in progress ...
Ganglia Information:

<table>
<thead>
<tr>
<th>Vital Statistics:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Version:</td>
<td>3.1.1</td>
</tr>
<tr>
<td>Distribution Formats:</td>
<td>RPM,.tar.gz</td>
</tr>
<tr>
<td>URL:</td>
<td>http://ganglia.info/</td>
</tr>
</tbody>
</table>
Ganglia

Cluster Management

- Monitoring tools

Altix ICE Grid (2 sources)

- CPUs Total: 94
- Hosts up: 13
- Hosts down: 0
- Average Load (1,5,15m): 0%, 0%, 0%
- Localtime: 2008-09-28 13:52

Service Nodes (physical view)

- CPUs Total: 2
- Hosts up: 1
- Hosts down: 0
- Average Load (1,5,15m): 1%, 4%, 5%
- Localtime: 2008-09-28 13:52

Rack 1 (physical view)

- CPUs Total: 92
- Hosts up: 12
- Hosts down: 0