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Abstract 

To determine if gene expression profiling could improve risk classification and outcome prediction in 

older AML patients, expression profiles were obtained in pre-treatment leukemic samples from 170 

patients whose median age was 65 years. Unsupervised clustering methods were used to classify patients 

into six cluster groups (designated A-F) that varied significantly in rates of resistant disease (RD, 

P<.0001), complete remission (CR, P=.023), and disease free survival (DFS, P=.023). Cluster A (n=24), 

dominated by NPM1 mutations (78%), normal karyotypes (75%), and genes associated with signaling and 

apoptosis, had the best DFS (27%) and overall survival (OS, 25% at 5 years).  Patients in clusters B 

(n=22) and C (n=31) had the worst OS (5% and 6%, respectively), cluster B was distinguished by the 

highest rate of RD (77%) and multidrug resistant gene expression (ABCG2, MDR1).  Cluster D was 

characterized by a “proliferative” gene signature with the highest proportion of detectable cytogenetic 

abnormalities (76%; including 83% of all favorable and 34% of unfavorable karyotypes).  Cluster F 

(n=33) was dominated by monocytic leukemias (97% of cases), also showing increased NPM1 mutations 

(61%).  These gene expression signatures provide insights into novel groups of AML not predicted by 

traditional studies that impact prognosis and potential therapy. 
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Introduction 

In the majority of patients, particularly those over 55 years of age, acute myeloid leukemia (AML) is a 

highly resistant disease and overall outcomes remain extremely poor. 1-5  While improved survival has 

been achieved in younger AML patients or in selected cytogenetic subsets, older patients are either unable 

to receive intensive chemotherapy or such therapy results in remission rates of only 25-55% and overall 

survival rates of 10% or less.1,6-10  In addition to age and white blood cell count, the presence of recurring 

cytogenetic abnormalities provides the most important prognostic information in AML.  Unfortunately, 

cytogenetic abnormalities associated with favorable outcomes account for only 5-12% [t(8;21)], 5-8% 

[inv(16)] and 10-12% [t(15;17)] of all AML cases, and are disproportionately seen in younger patients. 

11,12  In contrast, approximately 50-70% of all AMLs have normal or risk-indeterminate karyotypes. 11,13,14  

Gene mutations confer additional prognostic information that may be useful in refining 

cytogenetic risk classification.15-19  The most frequently acquired mutation in AML is a mutation at exon-

12 of the nucleophosmin (NPM1) gene.  This multifunctional, nucleocytoplasmic shuttling protein 

primarily resides in the nucleolus, playing a role in maintenance of genomic integrity, ARF-p53 pathway 

regulation, and centrosome duplication.20,21  Mutated NPM1 relocates to the cytoplasm and disrupts 

normal NPM1 function.  Approximately 25-35% of AML patients have NPM1 mutations, 22-24 with a 

higher percentage (47-60%) seen among those with a normal karyotype.22,25-26  The impact on survival is 

variable, but likely favorable, with secondary influences, such as concurrent FLT3 mutations having 

potentially significant roles.23,24,26,27 The FLT3 mutations occur as internal tandem duplications (ITD), 

observed in 15-35% of AML, or point mutations of the intracellular tyrosine-kinase domain (TKD), seen 

in an additional 5-10% of patients.19  The prognostic impact of FLT3 mutations trends towards decreased 

survivals or increased relapse rates primarily for patients with FLT3 ITDs. 28-30  

In contrast to traditional cytogenetic analysis or the detection of mutations in individual genes, 

global gene expression profiling provides a powerful method to probe the marked biologic heterogeneity 

 For personal use only. by on April 30, 2009. www.bloodjournal.orgFrom 

http://bloodjournal.hematologylibrary.org
http://bloodjournal.hematologylibrary.org/subscriptions/ToS.dtl


 4

of AML.  Comprehensive expression profiles have the power to provide new insights into mechanisms of 

leukemogenesis and to enhance risk classification and therapeutic targeting in AML.  A number of 

laboratories using supervised learning algorithms have identified unique gene expression signatures 

associated with karyotypic abnormalities, normal karyotypes, and NPM1 mutation status.31-39  In contrast, 

we wished to determine whether gene expression profiling using an entirely unsupervised approach could 

reveal intrinsic biologic groups of AML among a set of well characterized older AML patients, with a 

high frequency of normal and unfavorable cytogenetic abnormalities.  We further wished to determine 

whether the gene expression signatures we derived were useful in risk classification and therapeutic 

targeting in this poor risk disease.  

 

Patients, materials, and methods 

Patients 

This study utilized pre-treatment samples from patients with previously untreated de novo or secondary 

AML by FAB criteria, who were registered to SWOG clinical trials for patients over the age of 55 years 

(studies S9031, S9333), patients aged 15-55 years (S9034, S9500) and patients with secondary AML 

(S9126).  Trial details have been previously reported.2,9,40-42  All trials except S9031 excluded patients 

with acute promyelocytic leukemia (FAB-M3); S9031 evaluation was limited to non-M3 AML patients 

who received induction chemotherapy with Ara-C and an anthracycline.  Case selection was restricted to 

patients with cryopreserved blood or bone marrow containing >80% leukemic blasts, stored in the SWOG 

Myeloid Leukemia Repository (University of New Mexico) after appropriate informed consent.  

Microarrays were performed for 185 eligible patients between February 2003 and September 2003, and 

170 had high quality gene expression data that fulfilled technical criteria for study inclusion (outlined 

below).  Clinical, morphologic, cytogenetic, and outcome data on the 170 patients, along with all gene 

expression profiles, are provided at the National Cancer Institute Gene Expression Data Portal website. 

Conventional cytogenetic banding was performed in SWOG-approved  laboratories with review and risk 

classification assessment performed by members of the SWOG Cytogenetic Committee per published 

 For personal use only. by on April 30, 2009. www.bloodjournal.orgFrom 

http://bloodjournal.hematologylibrary.org
http://bloodjournal.hematologylibrary.org/subscriptions/ToS.dtl


 5

criteria.11  For studies S9031, S9126, S9333 and S9500, response to induction chemotherapy was assessed 

according to SWOG criteria.43  Study S9034, an intergroup trial coordinated by the Eastern Cooperative 

Oncology Group (E3489), used slightly different response criteria.  

 
Gene expression profiling 

RNA was prepared from thawed cryopreserved samples with the Qiagen RNeasy mini kit (Qiagen, 

Valencia, CA).  All specimens had >80% blasts as confirmed by microscopic review of Wright stained 

cytospin preparations of the thawed cell suspensions. Total RNA concentration was quantified with the 

RiboGreen assay (Molecular Probes, Eugene, OR); RNA integrity and DNA contamination were 

evaluated as described at http//hsc.unm.edu/crtc/willmanresearch.44   The isolated RNA was reverse 

transcribed into cDNA and re-transcribed into cRNA after double amplification using a modification 

reported by Ivanova et al to enhance detection of low abundance genes.44,45   Biotinylated cRNA was 

fragmented and hybridized to HG_U95Av2 oligonucleotide microarrays (Affymetrix).44  After analysis 

with Affymetrix Microarray Suite (MAS 5.0); the data was scaled to minimize experimental variation.44  

Technical criteria for case inclusion of the 185 initial specimens evaluated included: adequate total RNA 

>2.5 ug, good quality cRNA, good quality scanned images, and good experimental quality.  Experimental 

quality was assessed by GAPDH > 1800, > 10% expressed genes, and GAPDH 3’/5’ amplification ratios 

of < 4.  High quality expression data were obtained on 170 of the 198 specimens, 133 from marrow and 

37 from peripheral blood.  Of the original 12,625 probe sets in the Affymetrix HG_U95Av2 probe sets, 

9463 genes were “present” in at least 1 case; these genes were further analyzed after transformation to 

Savage rank scores (VxInsight).44 

 
NPM1 and FLT3 mutational status  

Samples were evaluated for NPM1 mutations utilizing cDNA amplified to generate a 249 bp fragment 

spanning portions of exons 11 and 12 (see Supplement for details).44 The PCR products were subjected to 

dissociation analysis (65ºC to 80ºC) with appropriate controls. Samples with characteristic melting 

profiles underwent agarose gel electrophoresis and hybridization with NPM1 variant A probe or a pool of 
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13 probes for variants B-Q26.   Cases were also evaluated for FLT3 ITDs in exon 14 and 15, as previously 

described and screened for FLT3 TKD in exon 20 using two methods (see Supplement).44,46  Suspected 

FLT3 ITDs and TKD mutations were confirmed by sequencing.46   

 
Statistical analysis 

VxInsightTM, developed at Sandia National Laboratories for extremely large datasets, was the primary 

unsupervised data mining tool utilized in this study (http://www.cs.sandia.gov/projects/VxInsight.html). 

47-50   Using a force-directed placement algorithm, clusters were formed one hundred times using different 

starting conditions for the random number generator.  The most representative single ordination (the most 

central member of the whole set) was then determined by measurement of the total overlap of local 

neighborhoods around the individual genes.  Analysis of variance (ANOVA) was used to identify rank 

ordered gene lists characterizing each cluster; bootstrap resampling was applied to estimate the stability of 

these lists.50 Receiver operator characteristic (ROC) curves and genetic algorithm K-nearest neighbor 

method (GA/KNN) were additionally employed to identify top characterizing genes for the VxInsight 

derived clusters, as further explained in the Supplement.44  The full rank ordered gene lists derived from 

ANOVA with bootstrapping, ROC, and GA/KNN are provided in the Supplement.44  Principal component 

analysis (PCA) and hierarchical clustering were performed using MATLAB (MathWorks, Inc, Natick, 

MA).51,52   Concordance between VxInsight and hierarchical clusters was measured by the adjusted Rand 

index, with Monte Carlo estimation of statistical significance (N=10000 replications).53 

Comparisons between clusters were based on the Kruskal-Wallis test for continuous variables 

(age, lab values), and on the χ2 approximation of the Fisher exact test and Pearson’s χ2 test for 

independence for dichotomous and categorical variables [CR, resistant disease (RD), FAB classification, 

cytogenetic characteristics, FLT3 mutations].  Overall survival (OS) was measured from registration on 

treatment study until death from any cause, with observation censored for patients last known alive.  

Disease free survival (DFS) was measured from the date the complete response was established until the 

relapse of leukemia or death from any cause, with observation censored for patients last known to be alive 

 For personal use only. by on April 30, 2009. www.bloodjournal.orgFrom 

http://bloodjournal.hematologylibrary.org
http://bloodjournal.hematologylibrary.org/subscriptions/ToS.dtl


 7

without report of relapse.  Distributions of OS and DFS were estimated by the method of Kaplan and 

Meier 54 and compared between clusters using the log rank test.55  Multivariate analyses of cluster 

differences and prognostic factors were based on logistic regression models for CR and RD, and on 

proportional hazards regression models for OS and DFS.56  In logistic regression models, differences in 

proportions between clusters are represented as odds ratios relative to a defined cluster.  This permits the 

cluster differences to be compared on a consistent scale regardless of other terms in the model.  The 

hazard ratio plays an analogous role for proportional hazards regression models.  All P-values were two-

tailed and, in view of the exploratory nature of these analyses, were calculated without adjustment for 

multiple testing.  

 
Results 
 
AML cohort 

Gene expression profiles were obtained from a retrospective cohort of 170 patients with previously 

untreated AML.   Clinical, morphologic, cytogenetic and mutation status of the cohort, outlined in Table 

1, showed no gender predominance and a majority of patients (80%) over the age of 55 years with a 

median age of 65 years (range 20-84).  Thirty-two cases (19%) were judged by clinical history to have 

secondary AML, while 104 (61%) had clinically de novo AML (clinical onset was not recorded in the two 

trials for patients of age 15-55, and in none of the other trials was secondary AML further classified as 

MDS- versus treatment-related).  All FAB subtypes were included except AML-M3, with a 

preponderance of acute myeloblastic leukemia with maturation (FAB-M2, 35%). Adequate cytogenetic 

analyses were obtained on 141 (83%) of the patients, and 139 of these could be assigned to cytogenetic 

risk categories. The majority of cytogenetically evaluable cases fell into the intermediate cytogenetic risk 

group (59%) due to the high percentage of patients with normal karyotypes (46%).  
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Unsupervised clustering algorithms   

VxInsight analysis partitioned the AML patients into six distinct and stable groups based on strong 

similarities in gene expression among the 9,463 genes, visualized in Figure 1.  

  

Figure 1 

Membership among clusters ranged from a low of 18 patients (cluster E, 11%) to a high of 42 patients 

(cluster D, 25%).  Clusters derived from PCA and unsupervised hierarchical clustering showed significant 

levels of concordance with the VxInsight-derived clusters (P<.0001) (Figure 2). 
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Figure 2 
 

VxInsight cluster membership, treatment outcomes, and clinical correlates 

DFS varied significantly between VxInsight clusters (Figure 3, P=.023). Clusters A and C had the lowest 

and highest hazard ratios, respectively, for relapse or death in remission (Table 2), and all three remitting 

patients in cluster B relapsed within 16 months.   Of the 170 patients, 145 have died and the remaining 25 
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were last known to be alive at 13 months to 10.9 years after starting treatment (median 6.1 years).  

Overall survival did not vary significantly among clusters (P=.40), but generally paralleled the DFS 

results, with cluster A having the best OS and clusters B and C generally the worst (Table 2, Figure 3). 

 

Figure 3 

Response to induction chemotherapy varied significantly among the six clusters (Table 2).  Sixty 

(35%) of the 170 patients were resistant to their protocol induction chemotherapy, with a significantly 

different RD rate seen between clusters (P < .0001).  This was largely due to an exceptionally high RD 

rate in cluster B (77%) compared to all other clusters combined (43/148, 29%), although heterogeneity 

among the remaining five clusters was also significant (P=.021).  Roughly complementary results were 

observed for CR.  Seventy-three patients (43%) achieved CR, and the CR rate varied significantly among 

clusters (P=.023), being lowest in cluster B (14%).  Forty-seven of the remitting patients have relapsed, 

and 11 others have died without report of relapse.   
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VxInsight cluster membership was not significantly correlated with patient age or de novo versus 

secondary onset of disease (Figure 4, Table 3). Despite the absence of a significant association with age, it 

was noteworthy that only 4% of patients in the two clusters with worse outcomes (B, C) were under age 

56, compared to 27% (32/117) of patients in the remaining clusters. 

 

Figure 4 

Clinical and laboratory parameters that showed significant correlation with VxInsight cluster 

membership were: pretreatment white blood cell counts, blast percentages, platelet counts; FAB 

classification; normal or t(8;21) karyotypes, and NPM1 mutation status (Table 1, 3).  The lower white 
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blood cell and blast counts in the poor-risk clusters (B,C) suggest underlying marrow damage. Clusters 

were segregated by their degree of blast maturation and more specifically by myeloid versus monocytic 

derivation (FAB classification) (Figure 4).  Cluster F consisted almost entirely of monocytic leukemias, 

with 97% of members having FAB-M4 or FAB-M5, although monocytic leukemias were present in lower 

proportions in the five other clusters.  Cytogenetic risk groups varied with cluster membership (Table 3, 

Figure 4).  Cluster A, with the best overall survival, had the highest percentage of normal karyotypes 

(75%).  In contrast, cluster D had the highest percentage of karyotypic abnormalities (76%), including 

those associated with both favorable [8/8 with t(8;21) and 2/4 patients with inv(16)] and unfavorable risk.  

NPM1 mutations were present in 30% (50/165) of cases with significant differences observed 

between VxInsight clusters (Table 1, 3, Figure 5). The highest prevalences were seen in cluster A (78%), 

which also had the highest percentage of females and normal karyotypes, and in cluster F (61%) with the 

predominance of monocytic leukemias.  FLT3-ITD mutations were identified in 27% of cases (Table 1) 

with no significant differences among VxInsight groups (Table 3).  A significant number of patients with 

FLT3-ITDs also had NPM1 mutations (Table 3). FLT3-TKDs were found in 12% of the AMLs 

investigated; cluster A had the highest percentage of point mutations (FLT3-TKDs).  
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Figure 5 

Further analyses were performed to investigate whether comparisons of outcomes between the 

clusters might be biased by confounding effects of the other factors considered.  In multivariate logistic 

regression analysis, increasing age (P=.024), secondary AML onset (P=.010) and unfavorable cytogenetic 

risk category (P=.030) had independent detrimental prognostic effects on RD.  AML onset and/or 

cytogenetic risk group were unknown for 57 of the 170 patients. Therefore to allow for the possibility that 

results might be biased by the exclusion of these patients, the association between RD rate and cluster was 

estimated with and without adjustment for age, AML onset and cytogenetic category, for the 113 patients 

with complete data.  The results, shown in Figure 6, confirm that heterogeneity of RD rates among the six 

clusters remained statistically significant (P<.0001) after adjusting for possible confounding.  The 

variation of CR rates among the six clusters remained marginally significant after adjusting for age, AML 
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onset and unfavorable cytogenetics (P=.051).  In proportional hazards regression analyses adjusting for 

age, AML onset and cytogenetic risk category, the variation of OS among clusters remained 

nonsignificant (P=.56).  DFS also did not vary significantly among clusters after accounting for similar 

effects (P=.22), however this analysis was inconclusive since only 49 remitting patients had both AML 

onset and cytogenetic risk group data. 

F

C

0.1 1 10
Odds Ratio (Relative to Cluster A)

E

B

D

 

 

Figure 6 

Genes distinguishing VxInsight clusters  

Using ANOVA with bootstrapping, gene lists were derived that define the VxInsight clusters. The 50 

most significant discriminating genes for each cluster are provided in the Supplement,44 with a summary 

of these lists, including the most significantly up-regulated and down-regulated genes, given in Table 4.  

Gene expression patterns for a subset of these genes are highlighted in Figure 7.  The top 50 ranked genes 

for clusters B, D, and F are primarily up-regulated (90%, 92%, 98% of genes, respectively) in comparison 

to the down-regulation of several significant differentiating genes for clusters A, C, and E (36%, 54%, 

 For personal use only. by on April 30, 2009. www.bloodjournal.orgFrom 

http://bloodjournal.hematologylibrary.org
http://bloodjournal.hematologylibrary.org/subscriptions/ToS.dtl


 15

14% of genes, respectively).  Cluster D, containing virtually all of the cases with favorable cytogenetic 

abnormalities and a large percentage of intermediate and unfavorable karyotypes, is defined by high 

expression (top 46 characterizing genes are overexpressed) of a number of genes involved in DNA 

replication (GART, MCM3, PCNA), control of cell proliferation (CDK4, ODC1, STMN1), transcription 

(POLR2H, EIR2S1, HTATSF1) and DNA repair (UNG, CHEK2, APEX1, ADPRT).  This gene expression 

signature may be reflective of high “proliferative” activity.  An interesting finding is the decreased 

expression of homeobox A9 (HoxA9) and A10 (HoxA10) in cluster D compared to the other AMLs. This 

may relate in part to the low incidence of NPM1 mutations.39   

 

Figure 7 

Genes associated with cell signaling (IL12-ranked 29), apoptosis (LTBP1, caspase 3), leukemic 

transformation (MEIS-ranked 30, WT1-ranked 22 , FOXC1), and multidrug resistance (MRP2-ranked 40) 
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are overexpressed by cluster A.  The top ranking gene, latent transforming growth factor (TGF) beta 

binding protein (LTBP1) activates latent TGF-beta, a modulator of apoptosis that is independent of 

caspase 3 mediated mechanisms.57-59  FOXC1 is a TGF-beta1 responsive gene that possibly functions as a 

tumor suppressor gene.60  Notably absent in cluster A is expression of the MHC II alleles. 

Cluster B with the poorest clinical outcomes, shows increased expression of the multi-drug 

resistance gene ABCG2 (ranked 18). The multi-drug resistance membrane transporter (MDR1) is 

concurrently overexpressed (Figure 7).  Additional genes of interest are PBX1 and serine/threonine 

protein kinase 17A (STK17A-ranked 23).  STK17A plays a role in the regulation of apoptosis; PBX1 is a 

cofactor in genetic mechanisms that prevent myeloid differentiation but appears to lack inherent 

transformation ability in isolation.61,62 Cluster C shows expression of genes involved in immunoregulation 

(IRF4, IL10R, MALT), including several probe sets for gamma interferon and interferon inducible genes.   

Inhibitors of apoptotic function (ICAM2-ranked 34, DFFA/DFF45-ranked 33) are over-expressed 

among cluster E members. This cluster showed variable expression of genes related to immune function 

with up-regulation of some genes (SPN, IRF3, IFITM2) and down regulation of others (MCP,CHUK).  

Finally, cluster F has the most distinguishing genetic profile due to the significant number of genes 

associated with monocyte differentiation and function (LILRB1, AOAH, TIL3, CASP1, LGALS3).  The 

multidrug resistant gene for vault-transporter lung resistance protein (LRP- ranked 54) is also found in 

this group. 

Alternative gene lists utilizing different statistical and normalization methods are provided in 

Supplement.44 These show extensive overlap with the ANOVA derived gene lists. 

 
Discussion 

We used a novel unsupervised clustering algorithm (VxInsight) to analyze gene expression profiles from 

older AML patients with a high proportion of intermediate and poor risk outcome factors.  This type of 

analysis, without knowledge of prior class definitions, allows for identification of fundamental subsets of 

patients sharing similar expression signatures. Unanticipated similarities between cytogenetically diverse 
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patient groups, as discovered in this study and reported by others,35 would have been harder to detect with 

a more restrictive supervised approach.  The result is an interesting separation of the AML cases into six 

distinct clusters with outcome differences.   

In contrast to previous studies using unsupervised computational methods alone,32,34,35 we found 

significant outcome differences between the clusters defined by gene expression for RD after induction 

therapy (P<.0001), CR rate after induction therapy (P=.023), and DFS (P=.023).  The heterogeneity of 

RD and CR rates among clusters was not explained by confounding effects of age, AML onset and 

unfavorable cytogenetics, indicating that the clustering conveyed prognostic information independent of 

the other factors.  For some patients, data was absent regarding prognostic factors, in particular de novo 

versus secondary onset of AML and cytogenetics.  However in the multivariate regression analyses of 

treatment outcomes, it was evident that excluding the patients with incomplete data did not markedly 

influence the magnitude or statistical significance of differences between clusters.  This was most clearly 

evident for RD, for which both the statistical significance of cluster differences and the ORs representing 

the magnitudes of those differences were essentially unchanged by the adjustment for covariates.  

Evaluation of DFS was limited by the small number of remitting patients with complete data. For CR, 

adjusting for the covariates decreased the statistical significance from P=.023 to .051, which is not a 

profound change, especially given the necessity of excluding patients with incomplete data from the 

multivariate analysis.   

Members of cluster A had the best DFS and OS: 27% and 25%, respectively, at 5 years. The 

striking finding for this group was the high percentage of NPM1 mutations (78%).  This group has many 

of the characteristics emerging for cases of AML with NPM1 mutations including the disproportionate 

number of women (67%), increase in normal karyotypes (75%), older age (but not significantly different 

than other cluster groups), and higher WBC counts. 22,24-27 Genes responsible for the better outcome were 

not clearly identified, but significant overlap was discovered between top genes predicting for cluster A 

and for those previously reported for NPM1 mutations based on the data by Alcalay et al (see Supplement 

for more detail). 39,44  For example, 8 of the top 15 ranked genes (53%) for cluster A were also genes 
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found to be predictive of NPM1 mutations. 39  This finding is particularly striking given the use of 

different Affymetrix platforms with different probe sets (see Supplement).  Genes predictive of cluster A 

were also examined in Valk et al’s AML dataset; their cluster group 6 showed a similar gene expression 

pattern to cluster A as well as a high incidence of NPM1 mutations (100%) (see Supplement).33,44   

Gene expression profiles associated with NPM1 mutations are dominated by a stem-cell 

molecular signature 39. Activation of HOX genes and TALE partner genes (i.e. MEIS) are found in NPM1 

gene signatures 39. The reportedly favorable impact of NPM1 mutations on survival has included higher 

CR rates 23,26, and a trend to longer OS and EFS 26.  However, other studies have observed either no 

significant effect, 22,25 or an impact only when NPM1 mutated cases are also FLT3-ITD negative.24,26,27  

While AML with NPM1 mutations are associated with increased FLT3 mutations,22-24 this relationship 

was not observed for cluster A members.  Cluster A had a disproportionate number of FLT3 mutations 

involving TKDs rather than ITDs, but the overall FLT3 mutation incidence was similar to the other 

VxInsight groups.  FLT3 TKDs have been linked to increased release of IL-12 by leukemic blasts; IL-12A 

was overexpressed by members of cluster A.63  IL-12 has anti-angiogenic and anti-tumor effects and 

unless offset by an increased level of pro-angiogenic regulators, may have a role in improving 

outcomes.63,64   

Cluster A members had overexpression of Wilms tumor (WT1) gene; this gene is overexpressed 

at variable levels in 75-100% of AMLs at diagnosis.18,65 A lower level of expression of WT1 has been seen 

among the more differentiated AMLs in most but not all series.18,66   Because of the increased WT1 

expression, patients in cluster A may be more likely to benefit from WT1-specific immunotherapy than 

other AML patients, either in the form of a T-cell approach or a vaccine.14,66  One potential problem is 

that a number of the MHC class II genes were down-regulated in cluster A.  Because tumor cells are 

poorly immunogenic when deficient in MHC class II molecule expression, the leukemic cells may escape 

host immunity.  Cluster A also had over-expression of genes that promote apoptosis (LTBP1, CASP3), 

with LTBP1 being a particular important gene for predicting cluster A membership (ranked 1) and for 

predicting NPM1 mutations.24,39 
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Patients in clusters B and C had the worst DFS, with estimated probabilities of 0% and 6%, 

respectively at five years.  They also had the poorest OS, although OS did not vary significantly among 

clusters. Cluster B, in particular, is an interesting group of 22 patients: 77% were unresponsive to 

induction chemotherapy, and its three remitting patients all relapsed within 16 months. This group of 

patients might be considered prone to disease resistance, since they had the highest median age (68 years) 

and highest incidence of secondary disease (32%); yet these factors did not vary significantly in the six 

clusters. Despite 42% of cases having a normal karyotype, only one individual (5%) had an NPM1 

mutation. One gene overexpressed by these patients was ABCG2. ABCG2, also termed breast cancer 

resistance protein (BCRP) and mitoxantrone resistance protein (MRX) is a member of the ATP-binding 

cassette (ABC) superfamily of membrane transporters, that function as drug efflux pumps to remove 

chemotherapeutic agents from cells.67 ABCG2 is expressed by approximately one-third of adult AMLs 

when measured using semi-quantitative RT-PCR or flow cytometric analysis.68-71  Of relevance to our 

study is the report by Steinbach and colleagues, who found significantly higher median ABCG2 gene 

expression levels in 24 pediatric AML patients who failed to achieve remission after initial induction 

chemotherapy compared to the 21 patients who achieved remission.72  Similar and discrepant results have 

been reported by others using varying and sometimes discordant analytical methods and study 

designs.71,73,74   

The significant ABCG2 over-expression among members of our high induction failure cluster, B, 

supports a role for ABCG2 in chemoresistance, possibly in combination with MDR1.75,76  Permeability 

glycoprotein (MDR1, P-gp or ABCB1) was concurrently overexpressed among patients in cluster B but 

MDR1 alone did not significantly differentiate this group from the other AML patients.  Drug-sensitive 

cells transfected with ABCG2 become resistant to mitoxantrone, doxorubicin, daunorubicin and 

topotecan,69 while ABCG2 expressing cells from AML patients are resistant to daunorubicin in vitro.77  

Therefore, treatment methods circumventing ABCG2 mediated multidrug resistance should be considered 

for evaluation in future patients with gene profiles similar to cluster B members.  These include the use of 
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ABCG2 inhibitors and antineoplastic agents that show poor ABCG2-mediated efflux (i.e. idarubicin or 

newer agents in development).78  

The other poor outcome cluster, C, had the highest rate of complete response to induction therapy 

(58%) with only 16% of the 31 patients showing initially resistant disease.  However these CRs were 

comparatively short lived: in the analysis of DFS, cluster C had the largest hazard ratio of the six clusters.  

Many high-ranking genes defining this cluster were down-regulated (54% of the top 50 genes). Among 

the significantly over-expressed genes were genes involved in immunoregulation including; interferon 

regulatory factor-4 (IRF4), a gene regulated by NF-kappaβ member c-rel;79 IL-10RA, a member of the 

interferon receptor family; and MALT1, a factor required for NF-kappaβ  activation. Immune mediated 

anti-tumor effects may have played a role in the initial therapeutic responses in this ultimately poor 

outcome group. 

Cluster D had the largest membership (n=42), the highest prevalence of karyotypic abnormalities 

(76% of members), and a low prevalence of NPM1 mutations (5% of members).  This cytogenetically 

diverse group contained the majority of patients in the favorable cytogenetic risk group [10/12, 83%, 

including all t(8;21)], as well as the largest percentage of patients with unfavorable karyotypes (15/44, 

34%; 44% of members).  A study of 116 adult AML patients, initially using an unsupervised clustering 

approach, also found karyotypic diversity within cluster groups.35 Analogous to their findings, primary 

translocating events may be less important in the transformation to leukemia than the overall 

dysregulation of signaling pathways or other genetic events better reflected in gene expression profiles. In 

cluster D, the “high proliferative activity” gene signature dominated and may have obscured gene 

signatures more specific to the divergent karyotypes.  The majority of top ranked genes in cluster D were 

associated with DNA proliferation and repair.  It is unclear if the “high proliferative” signature led to an 

increase in detectable cytogenetic abnormalities, as in vitro proliferation is required to detect such 

karyotypic abnormalities; or if the cytogenetic abnormalities led to the increase in proliferative genes.  

Notable in this cluster was the low expression of class I homeobox A genes (HOXA9, HOXA10).   HOXA 
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gene expression has been shown to be lower among AMLs with favorable karyotypes compared to 

unfavorable,33,80,81  and higher among patients with NPM1 mutations,39 normal karyotypes or subsets of 

patients with intermediate risk karyotypes.33,82  Down-regulation of HOXA9 and HOXA10 in cluster D 

may reflect the lower proportion of patients with NPM1 mutations or decreased normal karyotypes (24%) 

relative to the other clusters (42-75%).   

Cluster E represented a small group of patients (n=18), many of whom were registered to SWOG 

protocol S9500 for the treatment of younger adults (<56 years).  Cluster F (n=33) was defined by AML 

with monocytic differentiation (97% of members), the highest pre-treatment white blood cell counts, and 

a high percentage of NPM1 mutations (61%). NPM1 mutations have been shown to be increased among 

monocytic leukemias and the gene expression profiles contained many genes pertinent to monocyte 

function.25,26,27  When our gene lists were compared to those in the study by Valk et al, 23% of the top 40 

genes defining cluster F were similar to those seen in Valk’s cluster containing monocytic leukemias (see 

Supplement).34,44  Similarly, when significant cluster defining genes in our study were analyzed using 

Valk et al and Bullinger et al datasets, the strongest gene expression relationships were found among the 

monocytic groups in all the studies (see Supplement). 34,35,44 This confirms the importance of monocyte 

morphology on AML gene expression signatures and raises the question of whether the strong “monocyte 

signature” masks other genes of potential biologic significance in these groups.35   We are currently 

evaluating whether the outcome of monocytic leukemias with NPM1 mutations and a “monocytic gene 

signature” differs significantly from AMLs with a “stem-cell molecular signature” seen in cluster A and 

reported by Alcalay et al.39 

This gene expression profiling study highlights the divergent mechanisms and pathways of 

leukemic transformation that are not appreciated by current methods of AML diagnosis, classification and 

risk assignment.   No bias was induced during cluster selection in this analysis and therefore these subsets 

represent true reflections of the intrinsic biology in this cohort of patients. For example, the significance 

of NPM1 mutations in AML was unknown at the initiation of this study, yet the gene expression profiles 

clustered groups of patients together with this unique genetic abnormality. Additional studies will be 
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important to determine if the improved survivals in cluster A with increased NPM1 mutations relate to the 

gene expression signatures displayed by these cases, regardless of the FLT3 mutational status. We are 

now evaluating the relative significance of these genes in predictive models of outcome using supervised 

learning methods in this same cohort (manuscript in preparation). The gene signatures identified in this 

study will hopefully provide clues to new therapeutic interventions for older AML patients who have 

historically done poorly with current treatment regimens.  Confirmatory studies and prospective 

validation of our results are required to continue to understand the significance of our clusters of patients, 

such as cluster B with increased RD.  These analyses are important to enhance risk classification and the 

identification of individual genes and pathways that can be exploited for improved therapeutic 

interventions. 
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Table 1: Clinical, morphologic, cytogenetic and mutation characteristics of adult acute myeloid leukemia 
cohort (N=170 patients) 
 
  Patients % 
Age < 56   34 20 
 56+ 136 80 
Sex Female   85 50 
 Male   85 50 
FAB M1 40 24 
classification M2 60 35 
 M4 42 25 
 M5 13 8 
 M6 1 1 
 M7 2 1 
 M0 10 6 
 Other 2 1 
Evaluable No 29 17 
cytogenetics Yes 141 83 
Cytogenetic Favorable 12 9 
risk category 1 Intermediate 83 59 
(N=141) Unfavorable 44 31 
 Not Assigned 2 1 
Specific Normal 65 46 
cytogenetic t(8;21) 8 6 
features (N=141) inv(16) 4 3 
NPM1 mutation Type A 45 27 
status (N=165) Non-Type A2 5 3 
 Type A or non-A 50 30 
FLT3 mutation3 ITD  46 27 
status (N=105) TKD 13 12 

   
Median 

 
Min – Max 

Age  65 20 – 84 
WBC (1000/mm3)  22.9 0.7 – 272.5 
Peripheral Blasts (%)  43 0 – 99 
Marrow Blasts (%)  70 5 – 99 
Platelets (1000/mm3)  53 2 – 1052 
Hemoglobin (gm/dl)  9.1 4.3 – 14.4 
1  Cytogenetic risk categories are defined by the following cytogenetic abnormalities:   
Favorable - inv(16)/t(16;16)/del(16q), t(8;21) or t(15;17) with any additional abnormalities (abn).  
Intermediate -  +8, -Y, +6, del(12p), or normal karyotype.   
Unfavorable - -5/del(5q), -7/del(7q), inv(3q), abn of 11q, t(6;9), t(9;22), or abn 17p; or complex 
karyotype defined as >3 abn. Other findings are listed as not assigned or nonevaluable. 12   
 
2  non-Type A includes 4 cases that hybridized to probes for 13 known variants (B-Q) 26,44 and 1 case that 
was sequenced 
 
3  ITD = internal tandem duplication; TKD= point mutations of intracellular tyrosine-kinase domain 
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Table 2.  Treatment outcomes of 170 adult AML patients, by VxInsight cluster. 
 

  A 
(N = 24) 

B 
(N = 22) 

C 
(N = 31) 

D 
(N = 42) 

E 
(N = 18) 

F 
(N=33) 

 
P-value1 

Events   8   3 17 12   5 13 
5 yr2 27%   0%   6% 23% 19% 32% 

95% CI   6 – 61%  0 – 71%   0 – 29%   2 – 45%   0 – 52% 10 – 54% 
HR4 1.00 2.56 3.58 1.73 1.50 1.25 

Disease-
free 
survival  

95% CI --- 0.67 – 9.81 1.52 – 8.44 0.71 – 4.25 0.49 – 4.59 0.52 – 3.03 

0.023 

Deaths 18 21 29 34 15 28 
5 yr2 25%   5%   6% 18% 15% 17% 

95% CI   8 – 42%   0 – 23%   0 – 15%   6 – 30%   0 – 32%   4 – 30% 
HR3 1.00 1.75 1.62 1.21 1.73 1.39 

Overall 
survival  

95% CI --- 0.93 – 3.29 0.90 – 2.94 0.68 – 2.15 0.87 – 3.44 0.77 – 2.51 

0.40 

No. (%) 8 (33%) 17 (77%)   5 (16%) 19 (45%)   6 (33%)   5 (15%) 
95% CI 16 – 55% 55 – 92%   5 – 34% 30 – 61% 13 – 59%   5 – 32% 

OR4 1.00 6.80 0.39 1.65 1.00 0.36 
Resistant 
disease  

95% CI --- 1.94 – 27.4 0.10 – 1.35 0.59 – 4.86 0.27 – 3.66 0.09 – 1.25 

<0.0001 

No. (%) 11 (46%)   3 (14%) 18 (58%) 16 (38%)   7 (39%) 18 (55%) 
95% CI 26 – 67%   3 – 35% 39 – 75% 24 – 54% 17 – 64% 36 – 72% 

OR4 1.00 0.19 1.64 0.73 0.75 1.42 
Complete 
response  

95% CI --- 0.04 – 0.80 0.56 – 4.79 0.26 – 2.01 0.22 – 2.60 0.49 – 4.08 

0.023 

 
1  P-value for heterogeneity among six clusters, based on Pearson’s chi-square test for independence (CR, RD) or log rank test (OS, DFS). 
 
2  Kaplan- Meier estimate of probability of OS or DFS at 5 years. 
 
3  Hazard ratio, relative to cluster A. 
 
4  Odds ratio, relative to cluster A. 
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Table 3: Clinical and laboratory correlates of VxInsight clusters derived from 170 adult acute myeloid 
leukemias  
 
                                                               VxInsight Clusters 
 

 A B C D E F P-value 
Number of 

patients 
 

24 
 

22 
 

31 
 

42 
 

18 
 

33 
 

Median age in 
years 

(range) 

 
67 

(22-76) 

 
68 

(58-76) 

 
65 

(44-84) 

 
62 

(20-83) 

 
60 

(21-81) 

 
64 

(34-83) 

 
0.27 

N = secondary 
AML (%) 

5 
(25) 

7 
(32) 

5 
(17) 

6 
(20) 

2 
(22) 

7 
(27) 

 
0.87 

 
Median pretreatment lab values: 
WBC (x103) 29 6 14 20 33 57 <.0001 
% PB blasts  76 28 38 48 85 11 <.0001 
% BM blasts  82 59 55 71 80 70 .0039 

Platelet (x103) 36 91 62 42 52 62 .0018 
Hemoglobin 

(gm/dl) 
 

9.8 
 

8.7 
 

9.4 
 

8.7 
 

9.5 
 

9.3 
 

.20 
 
Cytogenetic risk group (N=139):  
Favorable 
- t(8;21) 

0 (0%) 
0 (0%) 

0 (0%) 
0 (0%) 

1 (3%) 
0 (0%) 

10 (29%) 
8 (24%) 

1(8%) 
0 (0%) 

0 (0%) 
0 (0%) 

.0001 
<.0001 

 Intermediate 
- abnormal 
 - normal 

16 (80%) 
  1 (5%) 

15 (75%) 

 15(79%) 
7 (37%) 
 8 (42%) 

19(66%) 
3 (10%) 
16(55%) 

9 (27%) 
1 (3%) 

8 (24%) 

7 (54%)  
1 (8%)  

6 (46%) 

17(71%)  
 5 (21%) 
12(50%) 

.0002 
 

.011 
Unfavorable*   4 (20%)  4 (21%)   9 (31%) 15 (44%)  5 (38%)   7(29%) .41 

 
NPM1 mutation status (N=165) 
NPM1+ 
 

18/23 
(78%) 

1/22 
(5%) 

4/30 
(13%) 

2/41 
(5%) 

6/18 
(33%) 

19/31 
(61%) 

<.0001 

 
FLT3 mutation status (ITD, N=169; TKD, N=105) 
ITD+ 8/24  

(33%) 
3/22 

(14%) 
6/31 

(19%) 
13/42 
(31%) 

5/18 
(28%) 

11/32 
(34%) 

.467 

TKD+ 5/19 
(26%) 

0/9 
(0%) 

2/18 
(11%) 

3/27 
(11%) 

1/8 
(13%) 

2/24 
(8%) 

.404 

 
Both NPM1+ 
and FLT3 ITD 

 
7/23 

(30%) 

 
1/22 
(5%) 

 
2/30 
(7%) 

 
2/41 
(5%) 

 
3/18 

(17%) 

 
10/31 
(32%) 

 
.003 

PB – peripheral blood; BM – bone marrow; CR – complete remission; RD – resistant disease 
P-values determined using χ2-test 
* 11q23 abnormalities were seen in 9 cases and distributed in Clusters A-F respectively: 0,1,2,1,1,3. 
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Table 4:  Rank ordered gene lists characterizing each cluster.  Genes are up-regulated or down-regulated 
in relationship to the other clusters.1   
 
        Up-regulated genes                                                                       Down-regulated genes 

Cluste
r 

Or
de
r 

*P- 
value Gene  

Probe 
set Description  Order

*P- 
value Gene  

Probe 
set Description 

1 .002 LTBP1 1495_at 
latent transforming growth factor 
beta binding protein 1 3 .004 

HLA-
DPB1 

38095_i_a
t 

major histocompatibility complex, 
class II, DP beta 1 

2 .003 CASP3 36143_at 
caspase 3, apoptosis-related 
cysteine protease 7 .010 

HLA-
DMA 37344_at 

major histocompatibility complex, 
class II, DM alpha 

4 .011 FTO 37242_at fatso 8 .012 
HLA-
DPB1 

38096_f_a
t 

major histocompatibility complex, 
class II, DP beta 1 

5 .015 FOXC1 41027_at forkhead box C1 9 .007 CD74 35016_at 

CD74 antigen (invariant 
polypeptide of  MHC, class II 
antigen-associated) 

6 .003 COL4A5 32667_at 
collagen, type IV, alpha 5 
(Alport syndrome) 12 .001 

HLA-
DRB3 

41723_s_a
t 

major histocompatibility complex, 
class II, DR beta 3 

11 .015 RASGRP3 34748_at 
RAS guanyl releasing protein 3 
(calcium and DAG-regulated) 16 .009 

HLA-
DRA 37039_at 

major histocompatibility complex, 
class II, DR alpha 

 
A 

19 .025 MYCN 35158_at 

v-myc myelocytomatosis viral 
related oncogene, neuroblastoma 
derived  20 .007 RAB31 

33371_s_a
t 

RAB31, member RAS oncogene 
family 

1 .005 BIA2 36713_at BIA2 12 .01 LGALS1 33412_at 
lectin, galactoside-binding, soluble, 
1 (galectin 1) 

2 .003 CXorf6 38916_at 
chromosome X open reading 
frame 6 34 .046 STX4A 37911_at syntaxin 4A (placental) 

3 .014 PLOD2 34795_at 

procollagen-lysine, 2-
oxoglutarate 5-dioxygenase 
(lysine hydroxylase) 2 37 .032 PTPRC 

40520_g_
at 

protein tyrosine phosphatase, 
receptor type, C 

4 .011 OPTN 41744_at optineurin 40 .036 EMP3 39182_at epithelial membrane protein 3 

5 .016 CLIC2 40013_at chloride intracellular channel 2 44 .026 CORO1A 38976_at coronin, actin binding protein, 1A 

6 .017 RHD 37164_at Rhesus blood group, D antigen 51 .048 INPPL1 
36598_s_a
t 

inositol polyphosphate phosphatase-
like 1 

7 .021 
CDC42BP
A 39962_at 

CDC42 binding protein kinase 
alpha (DMPK-like)  

    

B 

8 .038 ANK3 36965_at 
ankyrin 3, node of Ranvier 
(ankyrin G)  

    

1 .003 SDR1 40782_at 
short-chain 
dehydrogenase/reductase 1 3 .015 DNCL1 34891_at 

dynein, cytoplasmic, light 
polypeptide 1 

2 .01 SDS 40390_at serine dehydratase      4    .022 RAB9P40 109_at Rab9 effector p40 

6 .058 
SERPINF
1 40856_at 

serine (or cysteine) proteinase 
inhibitor, clade F  5 .035 BDH 37211_at 

3-hydroxybutyrate dehydrogenase 
(heart, mitochondrial) 

8 .092 MALT1 38575_at 

mucosa associated lymphoid 
tissue lymphoma translocation 
gene 1 7 .018 CGI-87 41590_at CGI-87 protein 

9 .051 
HERPUD
1 39733_at 

homocysteine-inducible, 
endoplasmic reticulum stress-
inducible, ubiquitin-like domain 
member 1 12 .035 BCS1L 31842_at BCS1-like (yeast) 

10 .056 IRF4 37625_at interferon regulatory factor 4 14 .027 POP5 39516_at RNase MRP/RNase P protein-like 

11 .034 IL10RA 1062_g_at interleukin 10 receptor, alpha      

C 

12 .035 BCS1L 31842_at BCS1-like (yeast)      
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13 .054 RAB9A 39628_at 
RAB9A, member RAS 
oncogene family 

     

1 .001 RNASEP1 37471_at ribonuclease P1 24 .047 HOXA10 41448_at homeo box A10 

2 .006 PGDS 35523_at 
prostaglandin D2 synthase, 
hematopoietic 34 .028   32021_at 

H. sapiens transcribed sequence 
with weak similarity to protein 
ref:NP_060265.1 (H.sapiens) 
hypothetical protein FLJ20378 [ 

3 .006 NHP2L1 41746_at 
NHP2 non-histone chromosome 
protein 2-like 1 (S. cerevisiae) 40 .046 

KIAA066
9 

41788_i_a
t KIAA0669 gene product 

4 .010 UNG 
37686_s_
at uracil-DNA glycosylase 42 .056 HOXA9 37809_at homeo box A9 

5 .011 POP1 38513_at processing of precursors 1 
     

6 .008 
HSU7927
4 31838_at protein predicted by clone 23733

     

7 .005 CGI-51 34845_at CGI-51 protein 
     

8 .010 NASP 33255_at 
nuclear autoantigenic sperm 
protein (histone-binding) 

     

D 

9 .010 CDK4 1942_s_at cyclin-dependent kinase 4 
     

1 .002 CAPN1 33908_at calpain 1, (mu/I) large subunit 4 .002 DPM1 34879_at 

dolichyl-phosphate 
mannosyltransferase polypeptide 1, 
catalytic subunit 

2 .010 HSF1 40200_at heat shock transcription factor 1 16 .010 MCP 
38441_s_a
t 

membrane cofactor protein (CD46, 
trophoblast-lymphocyte cross-
reactive antigen) 

3 .005 ACTN4 41753_at actinin, alpha 4 19 0.019 STXBP3 
37962_r_a
t syntaxin binding protein 3 

5 .007 TNRC11 40998_at 
trinucleotide repeat containing 
11  25 0.007 PSMC6 949_s_at 

proteasome (prosome, macropain) 
26S subunit, ATPase, 6 

6 .007 G2AN 37040_at 
alpha glucosidase II alpha 
subunit 35 0.033 CHUK 33770_at 

conserved helix-loop-helix 
ubiquitous kinase 

E 

7 .005 NFIC 440_at 
nuclear factor I/C (CCAAT-
binding transcription factor) 36 0.019 COPB 34326_at 

coatomer protein complex, subunit 
beta 

1 .001 EPB41L3 41385_at 
erythrocyte membrane protein 
band 4.1-like 3 50 0.019 CCND2 36650_at cyclin D2 

2 .001 FCGR2A 
37688_f_a
t 

Fc fragment of IgG, low affinity 
IIa, receptor for (CD32) 57 0.020 ERG 914_g_at 

v-ets erythroblastosis virus E26 
oncogene like (avian) 

3 .001 HK3 36372_at hexokinase 3 (white cell) 80 0.035 IMPDH2 36624_at 
IMP (inosine monophosphate) 
dehydrogenase 2 

4 .002 CSPG2 
31682_s_
at 

chondroitin sulfate proteoglycan 
2 (versican) 82 0.022 6-Sep38826_at septin 6 

5 0.005 PGAM1 41221_at 
phosphoglycerate mutase 1 
(brain) 84 0.025 RPL17 32440_at ribosomal protein L17 

6 0.003 LILRB1 32475_at 

leukocyte immunoglobulin-like 
receptor, subfamily B (with TM 
and ITIM domains), member 1 

     

7 0.006 CYBB 37975_at 

cytochrome b-245, beta 
polypeptide (chronic 
granulomatous disease) 

     

F 

9 0.004 CD86 36270_at 
CD86 antigen (CD28 antigen 
ligand 2, B7-2 antigen) 

     

1 Analysis of variance was used to identify rank ordered gene lists with bootstrap resampling to estimate 
the stability of these lists.  
* P-value represents the estimated fraction of time that a gene was ranked at or above its observed 
position after tabulation of rankings from 1,000 bootstrap resamplings (see Supplement).44   
 

 For personal use only. by on April 30, 2009. www.bloodjournal.orgFrom 

http://bloodjournal.hematologylibrary.org
http://bloodjournal.hematologylibrary.org/subscriptions/ToS.dtl


 34

FIGURE LEGENDS:   

Figure 1.  VxInsight clusters in adult AML.  Six distinct clusters of AML patients are identified based 

on gene expression profiles and designated A-F.  The data are visualized as a three dimensional terrain 

map with two dimensional distances reflecting gene expression profile correlates and the third dimension 

representing cluster membership density. Additional information on VxInsight is provided at 

http://www.cs.sandia.gov/projects/VxInsight.html.44 

 

Figure 2  Alternative clustering algorithms of adult AML cohort.   (A) A multidimensional scatterplot 

generated using principal component analysis (PCA) reduces the dimensionality of the data by projecting 

the expression data matrix into three dimensions.  The largest sources of gene expression signal variance 

are represented as principal components (labeled PC1, PC2, PC3).51  (B) Two-dimensional unsupervised 

clustering dendrograms and "heat map" of gene expression data from the 170 AML cases using 9,463 

genes. Pearson’s correlation coefficient was used to compute gene and patient similarity.  The cluster-to-

cluster distance was computed using the average linkage. The relative gene expression scale is depicted 

on the left with the normalized scores ranging from -5 to >5. Gene cluster and patient cluster 

dendrograms are plotted to the top and right sides of the heat map, respectively. After PCA and 

hierarchical clustering was performed, the individual patients were color coded for comparison with their 

VxInsight cluster membership. These methods showed a significant degree of concordance with 

VxInsight cluster membership (adjusted Rand index = 0.3457, P< .0001) (see Supplement). 44 

 

Figure 3.  Estimated distributions for disease free survival and overall survival of AML patients, by 

VxInsight cluster membership.  (A) DFS varied significantly among the six clusters (log rank P = .023).  

(B) OS showed a trend that paralleled the DFS findings among the six clusters (log rank P = .40).  

Tickmarks indicate censored observations for patients last known to be alive without report of relapse. 
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Figure 4.  Clinical characteristics of 170 AML patients separated by VxInsight cluster membership.  

Each horizontal row represents an individual AML patient and each column is the clinical variable for 

that individual.  Age is presented as a continuum with the lightest color (white) representing the youngest 

patients and the darkest color (dark red) representing the oldest patients.  Discode relates to AML onset; it 

is color coded and categorized similar to the remaining clinical variables, as described in the legends 

below the associated columns. Distribution of FAB classification varied significantly among clusters 

(P < .0001). 

 

Figure 5.  Nucleophosmin (NPM1) gel analysis/hybridization.  (A) Hybridization to wild type NPM1 

probe confirms the presence of wild type NPM1 in 7 patient specimens and 3 cell lines (specimens 8-10).  

All 165 AML samples contained wild type NPM1.  (B) Patient specimen (1,3,4,5,7) hybridized to NPM1 

variant A probe consistent with a NPM1 variant type A mutation (see supplement). 44  

    

Figure 6.  Estimated odds ratios for resistant disease in each of clusters B through F, relative to 

cluster A.  For each cluster three estimates are shown: based on all 170 patients, without adjustment for 

other factors (bottom); based on 113 patients with known AML onset (de novo vs secondary) and 

cytogenetic risk category, without adjustment for other factors (middle); and based on the same 113 

patients, but with adjustment for age, AML onset, and cytogenetic risk category (unfavorable vs 

favorable/intermediate) (top).  Bars indicate 95% confidence intervals. Results of the three analyses are 

generally consistent, and in particular the heterogeneity of RD rates among the six clusters remained 

statistically significant after adjusting for possible confounding (P < .0001).   

 

Figure 7.   Differential expression of select genes among VxInsight clusters.   The columns represent 

the 170 AML samples, ordered by VxInsight membership. Rows represent select genes that are 

differentially expressed among the VxInsight clusters.  Red (high expression relative to the mean); green 

(low expression relative to the mean). 
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