Materials Modeling at the Molecular Level

 

 

 

 

 

 

 

Laura Frink

 

 

 

 

 

Sandia National Laboratories

Computational Materials Science Dept.

lfrink@cs.sandia.gov

 

Outline

 

lecture 1: An introduction to molecular modeling

 

lab 1: Getting to know MD and MC Codes

 

lecture 2: What to do with an MD or MC Code ????

 

lab 2: Computing materials properties

 

lecture 3: How to write efficient MC and MD codes

 

lab 3: Implementation of routines for improved efficiency and error estimation

 

 

Materials Modeling - Quantum Mechanics

 

Solve Schrodinger’s equation (eigenvalue problem):

 

 

Assumptions:

 

Compute:

 

State of the Art:

 

Molecular Scale

 

Molecular Theory - approximate behavior of correlation functions in known limits

 

 

Molecular Simulation - attempt to sample configuration space directly and completely

 

Mesoscale Modeling

 

 

 

 








 

 

brownian dynamics

 

 

 

solvation potentials

 

McMillian-Mayer Theory -- Laura Frink (9200)

A Little Physics

 

 

Hamiltonian :

 

Kinetic Energy:

Potential Energy:

 

(one-body) + (two-body) + (three-body) + ...

 

 

Total Partition Function:

 

The Kinetic Part (analytical solution):

 

The Configurational Integral:

 

 

Average Properties:

 

Goal of Molecular Modeling is to Predict <A> !!!

Computing the Configurational Integral

 

 

 

 

 

Conventional Quadrature

 

 

 

 

 

 

m = # of equidistant points along coordinate axis = 5

N = 100 particles D = 3-dimensions

O(mDN = 10210) evaluations of integrand !!

 

Random Sampling

 

 

 

 

 

The Metropolis Algorithm

 

Ensemble average property:

 

 

Probablility density for a certain configuration:

 

 

randomly generate points according to

 

is the number of points generated per unit volume around

 

Molecular Simulations

 

 

 

 

 

 

 

 

 

Monte Carlo:

 

 

Molecular Dynamics :

 

The ergodicity condition: every possible configuration may

be reached by a given algorithm.

 

The ergodic hypothesis:

time averages = ensemble averages

MD Simulations = MC Simulations

 

Non-ergodic systems

 

In principle

 

In practice:

 

Any system with problematical metastable states

 

 

 

 

 

 

 

 

 

 

Monte Carlo Simulations (the "Metropolis" scheme)

 

1. Set-up a system in a configuration with a nonzero Boltzmann factor exp[-U/kT].

 

 

 

2. Make a Trial Move

 

3. Compute the Potential energy of the new configuration

 

If : ACCEPT MOVE

If [

 

Compute ratio of probabilities of new and old configurations:

 

 

Compare ratio with uniform random number on [0,1]:

if R> random number --> ACCEPT MOVE

otherwise --> REJECT MOVE

 

]

 

5. Accumulate Averages (for independent configurations)

 

Molecular Dynamics

 

1. Set up initial configuration - positions and momenta

 

2. Compute forces

 

 

O(N2) operation -- calculate force on all particles

 

3. Displace particles according to Newton’s equations of motion

 

Verlet algorithm (also velocity Verlet and Leapfrog algorithms)

 

 

Higher order: Predictor-Corrector

 

4. Compute instantaneous properties and averages

5. Repeat 2-4 until averages converge

 

Evaluating Forces/Energies

 

non-bonded pairwise interactions +

 

Lennard-Jones potential

 

non-bonded Coulombic interactions +

direct calculation with Ewald summations

particle-mesh methods

 

 

 

 

bonded interactions(harmonic) +

 

 

 

bond-stretch

 

 

many-body interactions

 

 

bond-bending

 

torsion

 

 

Force / Energy calculation = ~90% of the computational effort

 

 

Some Details to Consider

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

References and Resources

 

1. Computer Simulation of Liquids, M.P. Allen and D.J. Tildesley, Oxford Science Pub. (1989).

 

2. Understanding Molecular Simulation, D. Frenkel and B. Smit, Academic Press (1996).

 

3. Computer Simulation in Chemical Physics, ed. by M.P. Allen and D.J. Tildesley, NATO ASI Series, Kluwer Academic Publishers (1993).

 

4. Applied Statistical Mechanics, T.M. Reed and K.E. Gubbins, McGraw-Hill (1973).

 

5. Statistical Mechanics, D.A. McQuarrie, Harper Collins Pub., (1976).

 

Web Pages

 

Farid Abraham, IBM: www.almaden.ibm.com/vis/fracture/prl.html

www.tc.cornell.edu/~farid/fracture/100million

 

Steve Plimpton, SNL: www.cs.sandia.gov/~sjplimp/lc.html

 

Peter Lomdahl, LANL: bigrost.lanl.gov/MD/MD.html

 

Uzi Landman, GA Tech: www.gtri.gatech.edu/res_news/LUBE.html

www.gtri.gatech.edu/res_news/SMALL.html